
A SEQUENTIAL APPROACH FOR MULTI-CLASS DISCRIMINANT ANALYSIS WITH
KERNELS

Fahed ABDALLAH, Cédric RICHARD, Régis LENGELLE

Laboratoire LM2S, Université de Technologie de Troyes
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ABSTRACT

Linear discriminant analysis (LDA) is a standard statistical tool
for data analysis. Recently, a method called Generalized discrim-
inant analysis (GDA) has been developed to deal with nonlinear
discriminant analysis using kernel functions. Difficulties for GDA
method can arise both in the form of computational complexity
and storage requirements. In this paper, we present a sequential
algorithm for GDA avoiding these problems when one deals with
large numbers of datapoints.

1. INTRODUCTION

Fisher linear discriminant analysis (LDA) is a classical multivari-
ate technique both for dimension reduction and classification. It is
based on a projection of the data vectors {xi}i=1,...,n that belong
to c different classes into a (c−1) dimensional space in such a way
that the quotient between the inter-classes inertia and the intra-
classes inertia is maximized [3]. The method consists on an eigen-
value resolution which leads to the so-called canonical variates [2]
that contain the whole class specific information in the (c − 1)
dimensional space. This strategy allows low dimensional repre-
sentations by using the first variates corresponding to the largest
eigenvalues indicating that the major part of the information in the
data is conserved. It can also be used as a multi-class classification
technique by partitioning the projected space into regions that can
be defined as the class membership. The LDA method for classi-
fication leads to linear decision boundaries and hence, the method
fails for nonlinear problems. Several attempts have been made to
incorporate nonlinearity into the original algorithm [2].

In the last few years there have been very significant develop-
ments in classification algorithms based on kernels. Kernel-based
methods are categorized into nonlinear transformation techniques
for representation and for classification. Support Vector Machines
(SVMs) were introduced and first applied as alternatives to multi-
layer neural networks [4]. The high generalization ability provided
by these learning machines has inspired recent works in discrimi-
nant analysis and feature extraction. Recently, a powerful method
for obtaining a nonlinear extension of the LDA method has been
proposed and referred to as the Generalized Discriminant Analy-
sis (GDA) [1]. An equivalent approach to the GDA can be found
in [2]. The main idea is to map the data into a convenient higher di-
mensional feature space F and then to perform the LDA algorithm
in F instead of the original input space. Fortunately, the LDA al-
gorithm can be reformulated into dot product form in F and there
is a highly effective trick to compute scalar products in some fea-
ture spaces using kernel functions which satisfy the Mercer con-

dition [4]. Hence, the GDA method can be expressed efficiently
as a linear algebraic formula in the transformed space using ker-
nel operators. Nevertheless, this formulation implies that we have
to manipulate the Gram matrix K of size (n, n) containing all
dot products in F . This can cause problems when the number of
patterns is very large. Our goal in this paper is to present a se-
quential method based on a gradient descent strategy avoiding the
need of inverting or even storing the kernel matrix K . The pre-
sented method allows us to calculate a discriminating axe in every
stage after manipulating the elements of the matrix K in a way
to remove the contribution of the discriminant axes calculated in
preceding stages.

In this paper, we first introduce scatter matrices which are very
useful for designing separability criteria. In Section 3 we give a
brief review of the GDA which is an efficient extension of the LDA
after mapping the data into the high dimensional feature space F .
In Section 4, the sequential GDA is reformulated with a gradient
descent procedure which avoids the manipulation of the kernel ma-
trix K of size (n, n). Experiments showing the validity of our ap-
proach are proposed in Section 5. Brief conclusions are provided
in Section 6.

2. SCATTER MATRICES FOR SEPARABILITY
CRITERIA

Recall that we consider a multi-class classification problem with
d-dimensional patterns {xi}i=1,...,n belonging to c different
classes,{Ci}i=1,...,c. Let nl be the number of patterns of the class
l thus

∑c

l=1
nl = n. For convenience and intelligibility, we show

hereafter all scatter matrices in the feature space F .
Every kernel-based algorithm starts with the following idea: via a
nonlinear mapping

φ : R
d −→ F

x 7−→ φ(x),

the patterns are mapped into a high dimensional feature space F .
LDA can then be performed in F on the set {(φ(xi)}i=1,...,n.
This reflects the notion that performing a nonlinear data trans-
formation into some specific high dimensional feature spaces in-
creases the probability of having linearly separable classes within
the transformed space.

The between-class scatter matrix is the covariance matrix of
the class centers in F and is defined as

B =
1

n

c∑

l=1

nl(m
φ

l −m
φ)(mφ

l −m
φ)t, (1)



where

m
φ =

1

n

n∑

i=1

φ(xi)

is the mean calculated over all the data in F and

m
φ

l =
1

nl

∑

x∈Cl

φ(x)

is the mean in F of the data belonging to the class Cl. The within-
class scatter matrix in F is the scatter of all samples around their
respective class means

V =
1

n

c∑

l=1

∑

x∈Cl

(φ(x)−m
φ

l )(φ(x)−m
φ

l )t. (2)

The mixture scatter matrix in F is the covariance matrix of all
samples regardless of their class assignments. It is defined as

S =
1

n

n∑

i=1

(φ(xi)−m
φ)(φ(xi)−m

φ)t. (3)

Note that B represents the inter-classes inertia, V corresponds
to the intra-classes inertia and S is the total inertia of the data
into F . The three matrix are related by the MANOVA equation
S = V + B. We show in the next section how to use these ma-
trices in order to get a judicious criterion of separability between
different classes.

3. GDA METHOD IN FEATURE SPACE

The projection of a pattern φ(x) from the feature space F to a
(c − 1)-dimensional space is performed by (c − 1) discriminant
functions

z(i) = w
t
iφ(x) i = 1, . . . , c− 1. (4)

This can be reduced as a single matrix equation

z = W
t
φ(x), (5)

where z is of components z(i) and W is a (D, c − 1) matrix
having wi as columns with i ∈ {1, . . . , c − 1}. D represents the
dimension of the feature space F that can be infinite.

The GDA method consists in finding the transformation matrix
W that in some sense maximizes the ratio of the between-class
scatter to the within-class scatter. A judicious criterion function is
the ratio [1, 3, 5]

J(W ) =
|W tBW |
|W tV W | (6)

where |X| indicates the determinant of a matrix X. The columns
of an optimal W are the generalized eigenvectors that correspond
to the largest eigenvalues in1

Bwi = λiSwi. (7)

By observing (7), we can conclude that deriving the GDA solu-
tions may be a computationally intractable problem since we have
to work in F which may be a very high, or even infinitely, dimen-
sional space. However, by using the theory of reproducing ker-
nels [4, 6, 7, 8, 9], such a problem can be solved without explicitly

1Bwi = ρiV wi and Bwi = λiSwi are equivalent eigenvalue
equations with identical solutions wi. See [2] for a demonstration.

mapping the data to the feature spaceF . Hence, any vector w ∈ F
of W must lie in the span of all training samples in F . Therefore
w can be written as follows:

w =

n∑

i=1

α(i) φ(xi) (8)

where the α(i)’s denote the components of a dual vector α of size
n. Note that the largest eigenvalue of (7) leads to the maximum
quotient of the inertia [1]

λ =
wtBw

wtSw
. (9)

It can be shown that (9) is equivalent to [1]

λ =
αtKLKα

αtKKα
(10)

where K is the Gram matrix whose components correspond to
the inner product of xi and xj in F , κ(xi, xj) = φ(xi)

tφ(xj).
Here, κ can be any kernel that satisfies the Mercer condition. L is
a (n, n) block diagonal matrix

L = (Ll)l=1,...,c

where Ll is a (nl, nl) matrix with all terms equal to 1

nl
. The

resolution of the eigenvector system (10) requires an eigenvectors
decomposition of the matrix K, K = PΓP t. It can be shown
that the solution α is of the form [1]

α = PΓ
−1

β (11)

with β’s can be obtained by maximizing λ in

λβ = P
t
LPβ. (12)

Note that the coefficients α should be divided by
√

αtKα in or-
der to get a normalized w as wtw = 1.
The i-th component of the projected pattern φ(x) on a vector wi

is given by using (4) and (8):

z(i) =
n∑

j=1

αi(j)κ(x, xj) = α
t
iκ̃(x) (13)

where αi is the dual vector corresponding to wi and the vec-
tor κ̃(x) = (κ(x, x1) . . . κ(x, xn))t. Memory and complexity
problems can arise for the GDA method when we deal with large
number of patterns since we have to perform an eigenvectors de-
composition of K . In the next section, we present the sequential
GDA which is less memory costing than the previous method since
we do not need to manipulate the (n, n) matrix K .

4. SEQUENTIAL GDA METHOD

It can be shown straightforwardly that (10) is equivalent to the
following quotient

λ =

∑c

l=1
nl(α

tµll)
2

αtNα
(14)

where the (n, n) matrix N = KKt−nµµt, µ = 1

n

∑n

i=1
κ̃(xi)

and µll = µ−µl with µl = 1

n

∑
x∈Cl

κ̃(x). In the aim of using
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Fig. 1. (a) Represents the projection of each class (50 elements) of Iris data on the first axe of the sequential algorithm. A gaussian kernel
was used with σ = 1. (b) Gives the value of the criterion in (14) as a function of number of iterations.

a gradient descent strategy, we shall now take the inverse of (14)
as an objective function to be minimized2

J(α) =
αtNα∑c

l=1
nl(αtµll)

2
. (15)

The gradient of (15) is given by the following expression:

∇αJ(α) =
2

(
∑c

l=1
nl(αtµll)

2)2
×

[
Nα

c∑

l=1

nl(α
t
µll)

2 −
c∑

l=1

nl(α
t
µll)µll(α

t
Nα)

]
. (16)

From (15), it is obvious that the norm ‖α‖ of α is irrele-
vant. This implies that we can keep in (16)

∑c

l=1
nl(α

tµll)
2 =

αt
∑c

l=1
nlµllµ

t
llα = αtΣα = 1. Here Σ = AAt where

A = [
√

n1µ11
, . . . ,

√
ncµcc]. This can be done by dividing α by

‖αtMD
1

2 ‖ where M and D are respectively the matrices con-
taining the eigenvectors and eigenvalues of Σ. Here Σ is a (n, n)
matrix. Thus it may arises in the eigenvector decomposition the
same problems of storage and complexity calculation as with the
standard GDA. We solve it by observing that Σ has a maximum
rank c. Eigenvectors of Σ are the same as those of the (c, c) ma-
trix AtA. Finally, we get the expression of the update ∆α where
the factor of 2 has been ignored:

∆α = Nα− (αt
Nα)

c∑

l=1

nl(α
t
µll)µll. (17)

This can be written using only vectors calculation

∆α =
n∑

i=1

y(i)

[
κ̃(xi)− y(i)

c∑

l=1

nl(α
t
µll)µll

]

+ nµ
t
α

[
µ

t
α

c∑

l=1

nl(α
t
µll)µll − µ

]
, (18)

2the reason for using the inverse of (14) will be clear in the following.

where y(i) = αt κ̃(xi). The sequential algorithm can be then
described as follows:

1. initialize α

2. calculate µl, µll and µ

3. calculate the eigenvectors and eigenvalues of Σ from AtA

and normalize α as α← α/‖αtMD
1

2 ‖, and next calcu-
late ∆α from (18)

4. update α: α ← α − η ∆α, with η > 0 the learning step
size

5. if finish, then exit; otherwise, go to 3.

In order to calculate a second vector α2, we should first elimi-
nate the contribution on the data of the first α1 calculated by max-
imizing (14). This can be done by observing that in (7), when S is
of full rank, the two axes w1 and w2 corresponding to the first two
eigenvectors of S−1B verify the equation wt

1Bw2 = 0. Thus in
F , we should replace φ(xi) using the rule

φ(xi)
new ← φ(xi)− (Bw1)(Bw1)

tφ(xi)

‖Bw1‖2
(19)

for all the data in the training set. Note that calculating (19) may
be a computationally intractable problem. However, observing that
our algorithm is formulated using only dot products, we only need
to compute the dot products

κnew(xi, xj) = (φ(xi)
new)t

φ(xj)
new. (20)

Developing (20) we obtain the expression of the dot product as

κnew(xi, xj) = κ(xi, xj)− φ(xj)(Bw1)(Bw1)
tφ(xj)

‖Bw1‖2

= κ(xi, xj)− M(xi, xj)

L
(21)

where M(xi, xj) is given by

M(xi, xj) =
1

n2

c∑

l,f

nl∑

a

nf∑

b

κ(xa, xi)κ(xb, xj)Γ(l)Γ(f),

(22)
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Fig. 2. (a) synthetic data consisting of three classes. The first is represented by ◦, the second by + and the third by ?. (b) Gives the
projection of the whole examples on the first two axes using the sequential approach. A gaussian kernel was used with σ = 1.

and

L =
1

n2

c∑

l,f

nl∑

a

nf∑

b

κ(xa, xb)Γ(l)Γ(f). (23)

Here Γ(r) =
[

1

nr

∑nr

k=1
y(k)− 1

n

∑n

p=1
y(p)

]
for a class r.

Then, the same algorithm described at the beginning of this sec-
tion can be applied with Knew. If we need to calculate a third axe,
we can apply (21) on the elements of Knew instead of the elements
of K . It is obvious that the complexity of the method increases
with the number of axes to be found. Indeed, our approach is com-
putationally efficient to compute the first axe. However, obtaining
the second, the third, ..., axes requires to compute the elements of
Knew which increases the complexity of the method.

5. EXPERIMENTS

The Iris data consist of 150 4-dimension examples of three
classes [1] (each class consists on 50 examples). One class is
linearly separable from two other non-linearly separable classes.
Figure 1 (a) shows the projection of the three classes on the first
axe, that was obtained with the sequential GDA. A gaussian kernel
was used with width σ = 1. The first axe seems to be sufficient
to separate the data. Figure 1 (b) gives the value of the criterion
in (14) as a function of number of iterations. The step size η was
set to 0.02. Next, we consider in Figure 2 (a) three non-linearly
separable synthetic classes consisting of samples uniformaly lo-
cated upon three circles with the same center but with different
radius. Each class contains 200 2-dimension samples. The first
class is represented by ◦, the second by + and the third by ?. Even
if the first axe is sufficient to separate the classes, we give in Fig-
ure 2 (b) the projection of the whole examples on the two first axes
using our sequential approach. A gaussian kernel was used with
σ = 1. The step size η was set to 0.04. Note that the second axe
allows to separate only classes 1 and 2 from class 3.

6. CONCLUSION

In this paper, we have presented a sequential approach to calculate
nonlinear features based on the GDA method proposed by [1]. The
importance in the proposed algorithm for sequential GDA is that it
does not need the inversion or even the storage of the Gram matrix
of size (n, n). However, the weakness of our approach is that the
complexity increases with the number of axes to be found.
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