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ABSTRACT

While an exact stationarization of a process with a given spec-
trum magnitude can be obtained via a complete randomiza-
tion of the spectrum phase (“surrogates” technique), we pro-
pose here a softened version in which the degree of stationar-
ization can be controlled by a perturbation of the actual phase.
A basic theory for such “transitional surrogates” is first dis-
cussed, with emphasis on two effective constructions based
on either white Gaussian noise or random walks. Some typi-
cal examples are considered for illustration, and performance
evaluations are provided for supporting the usefulness of the
approach in the context of stationarity testing.

Index Terms— Surrogates, stationarity test, random
phase

1. CLASSICAL SURROGATES AS
STATIONARIZERS

1.1. Rationale

Initially proposed in the context of nonlinear dynamics [1],
the idea of “surrogate data” has recently been pushed forward
in nonstationary signal analysis for a purpose of stationar-
ization [2]. In the classical formulation, surrogates are ob-
tained from a given observed signal by keeping unchanged
its spectrum magnitude while replacing its spectrum phase
by a random sequence. The rationale is that, since the spec-
trum phase conveys the information about the organization of
spectral components in the time domain, a random phase is
expected to destroy in the original signal those nonstationar-
ities (if any) that would end up in variations of local spectral
properties, while exactly preserving the same global spectrum
that is supposed to be time-invariant in the case of a stationary
process. This intuition can be made precise, and it has been
proved that, under specific assumptions on the phase distri-
bution, surrogates obtained this way are indeed second-order
[2] and even strict-sense [3] stationary, thus paving the way
for designing stationarity tests based on some comparison be-
tween local and global spectra, in which surrogates allow for
a statistical characterization of the null hypothesis of station-
arity.

1.2. Limitations

Testing for stationarity via surrogates has been discussed in
[2]. Two companion approaches have been proposed: the first
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one makes use of (local vs. global) distances whose statisti-
cal properties attached to the null hypothesis are derived from
simulations run with a number of independent surrogates; the
second one considers such an ensemble of stationarized surro-
gates as a learning set for stationarity, making possible to use
the powerful machinery of machine learning methods such as
one-class SVMs.

Whereas this proved effective for evidencing nonstation-
arities in various scenarii, the tests happen to be very sen-
sitive. For instance, when applied to realizations of actual
stationary (e.g., AR) processes, the rejection rate of the null
hypothesis turns out to be slightly higher than the prescribed
confidence level [2]. In a related way, one key point of the ap-
proach is to encompass in a common (time-frequency) frame-
work stochastic and deterministic situations, stationarity re-
ferring to pure tones in the latter case. In this case too (see
Fig. 7in [2]), surrogates cannot really reproduce the supposed
stationarity of the observation. This is a natural outcome of
the intrinsically stochastic generation of surrogates, but this
makes again the test somehow pessimistic.

The observation of such remaining limitations in the use
of “classical” surrogates for testing stationarity prompts to
think about related, possibly more versatile constructions:
this is the purpose of this study.

2. FROM CLASSICAL TO TRANSITIONAL
SURROGATES

Let us consider an observed signal {z[n],n € Z} whose (de-
terministic) realization has a discrete-frequency Fourier trans-

form
X[f] = Ax[f] exp{i¥x[f]}, f € Z. (1

According to the classical definition [1], associating a sur-
rogate to such an observation would amount to throw away
the actual spectrum phase W x[f] and to replace it by some
iid. sequence.! This is effective in terms of stationariza-
tion [2, 3] but somehow binary in the sense that, after the
phase replacement, a possibly nonstationary signal is actually
turned into an exactly stationary one, without any considera-
tion about the fact that, from an operational perspective, sta-
tionarity has to be understood in a relative sense (see [2]) that

!n this respect, one can remark that the idea behind surrogates differs
from other resampling plans such as the bootstrap since randomization is not
obtained by shuffling in some way actual values of the data but by generating
new values in a completely independent manner.

ICASSP 2011



incorporates the observation scale. In this respect, strict sta-
tionarity may appear as a too strong commitment, and having
access to a softened version could prove useful.

Whereas we could imagine to relax the usual i.i.d. hy-
pothesis by replacing the actual spectrum phase by some cor-
related sequence, we choose here to rather modify the original
phase according to:

Ux[f] = Uslf]:= Ux[f]+ OS], 2)

where O[f] stands for some random phase noise.

It follows from eqs.(1) and (2) that the frequency-frequency
distribution function of the so-obtained surrogates s[n] (i.e.,
the 2D Fourier transform of the corresponding covariance
function E{s[n]s[rn’]} in the time domain) reads

(I)S[f:f/]ZCDX[faf/]'A[f7f/]7 (3)
with
Ox[f, '] = Ax[f1Ax[fTexp{i(¥x[f] = Ux[f])}

and
A[f, f'] = E{exp{i(©[f] — ©[f'])}}. @)

In such a picture, stationarization corresponds to the sit-
uation where this term forces the spectral distribution func-
tion to only exist on the main diagonal of the plane, i.e.,
ALf, £ = 8[f — 1)

Within this perspective, different options are offered, that
may lead to new versatile forms of surrogate data. Depend-
ing on the type and level of the added phase noise O[f], the
rationale of such a perturbation is therefore to allow for a tran-
sition between the original signal and its classical surrogates,
whence the name “transitional surrogates”.

2.1. WGN transitional surrogates

The first possibility is to choose for ©[f] a white Gaussian

noise (WGN), i.e., an i.i.d. Gaussian sequence of variance o2

It directly follows from the assumed Gaussianity that the cor-
recting factor (4) to @ x [ f, f'] that appears in eq.(3) expresses
as:

1
R L (CU R o ST
a quantity that can be equivalently rewritten as

Alf, f'] = exp{—co[0]}. exp{co[f — f']}

if we furthermore assume the sequence ©[f] to be zero-mean
and stationary, with correlation function cg|.] (and therefore
such that cg[0] = o). This is indeed the case with the chosen
i.i.d. model for which we have:

colf — [') = a*3[f = ['],
leading to
Alf, f' = exp{a®(3[f — f1 = D} (6)

If we only consider the main diagonal f = [’ of the
frequency-frequency plane, it thus happens that we always
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have A[f, f’] = 1 whereas, for any other values f # f/, we
have A[f, f'] = exp{—o0?}. As expected, varying o from
zero to infinity allows therefore to gradually move from the
possibly nonstationary situation attached to ®x[f, f'] to a
function ®s[f, f'] that is diagonal since

;lm A[f7 fl] = 5[f - f/]v
g°—00
and, hence, to a (second order) stationarized situation. All in-
termediate situations of such “WGN transitional surrogates”
(WGNTS) correspond to a transition between these two ex-
tremes.

Remark — The choice made above to add a stationary Gaus-
sian sequence to the phase is not the only one for obtaining
transitional surrogates. It must however be remarked that,
when adding a stationary sequence, departing from the uni-
form distribution attached to classical surrogates is instrumen-
tal in order to guarantee a transition. Indeed, it is possible to
rephrase the above derivation starting from eq.(4) as follows.
If we assume that ©[f] is some i.i.d. sequence of characteris-
tic function We (u), the correcting factor (4) simply happens

to be T2 i ,
Al ={ e s

Assuming that ©[f] ~ N(0, 02), we readily get that W (u) =
exp{—c?u?/2} and thus recover the previously obtained
result (6). This has however to be contrasted with the sit-
uation where the phase would be uniformly distributed as
O[f] ~ U(—m,m)). In this case, we would have T (u) =
sin ru/mu, thus leading to $o(1) = 0, and hence to exact
stationarity.

2.2. Wiener-Lévy transitional surrogates

Turning back to (4), it appears that the correcting factor can
also be expressed via a characteristic function, namely

Alf, f'] = ®ae(l),

where AO[f, f'] := ©O[f] — O[f’] stands for the increment
process of the phase. Since the objective is to get a fac-
tor which is a weighting function depending only on the fre-
quency difference |f — f’| (so as to ultimately converge to
O[f — f']), a second possibility is to consider for the added
phase a process with stationary increments, in which case it
follows from (5) that

Alf, '] = exp {—;P(—)[f - f’]} :

where pg|.] stands for the second-order structure function [4]
(or variogram [5]) of the added phase. This can be achieved
with simple models of random walks and generalizations
thereof, such as fractional Gaussian noises [6] for which
polf — '] = (02/2)|f — f'|*", with 0 < H < 1. Within
the framework of such a model, we simply get

0.2
N1 = e { =17 - £
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Fig. 1. Time envelopes of white Gaussian noise transitional
surrogates (WGNTS) in the case of a unimodular pure tone,
as a function of the added phase noise standard deviation o.

with the expected (transitional and limiting) behaviour as a
function of both the added noise standard deviation o and
the Hurst exponent H that controls the increment correla-
tion. Whereas making use of both degrees of freedom could
be interesting, we will restrict here to the only uncorrelated
case H = 1/2 corresponding to a standard Wiener-Lévy pro-
cess for O[f], the associated surrogates being referred to as
“Wiener-Lévy transitional surrogates” (WLTS).

2.3. Examples

In order to first illustrate in a qualitative way the behaviour
of transitional surrogates, Fig. 1 displays how the envelope
of a unimodular pure tone gradually moves from unity to a
more erratic shape when the level of the added random phase
(WGN in this specific case) is increased. As expected, an
effective transition is indeed observed for such WGNTSs (a
similar result would have been obtained with WLTSs, up to
some possibly different range of ¢ for the region where the
most dramatic change occurs). In this case where surrogates
are aimed at preserving stationarity in a supposed “station-
ary” situation, the benefit that can be gained from transitional
surrogates is intuitively clear, with moderate levels of noise
avoiding to directly switch from the unimodular tone to the
“classical” surrogates (obtained in the limit ¢ — o0) for
which a highly fluctuating envelope would be obtained.

As a companion example, Fig. 2 refers to a nonstationary
test signal, namely the AM-FM example considered in Fig.
1 of [2]. In this case, the representation space is chosen as
the (P, F') plane, where P and F stand for the standard de-
viations of the instantaneous power and of the instantaneous
frequency, obtained respectively as the zero-th and first or-
der local moments of a time-frequency distribution. For each
value of the noise level o and according to the principle of the
one-class classifier described in [2], (P, F') values of a given
number of surrogates (typically 50, as in [2]) are displayed
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Fig. 2. WGNTS migration in the (P, F') plane, red ellipses
corresponding to different levels of the added noise (see text).

as blue dots, together with the (red) ellipse in which most of
them are contained. More precisely, each elliptic domain (as-
sociated to the value of o written nearby) is chosen so as to
contain a percentage equal to 100 — v of the corresponding
surrogates (in the case of Fig. 2, v = 15 %), and the detection
strategy amounts to consider the analyzed signal as stationary
if its (P, F) value falls inside the elliptic domain, and nonsta-
tionary otherwise. Since the (P, F') value of the actual signal
is the one located on the top right of the diagram (red trian-
gle), and since the stationary domain attached to the classical
surrogates corresponds to the most left ellipse, Fig. 2 clearly
evidences how increasing the noise level ends up with a tran-
sition that makes progressively the surrogates domain more
and more distant from the observation, thus revealing more
and more clearly the nonstationarity of the latter.

2.4. Improving stationarity tests

So as to give a quantitative appreciation of what happens
when using transitional surrogates in the context of stationar-
ity testing, two families of results will now be presented.

Under HO — The first one concerns the ability to reproduce
the null hypothesis HO of stationarity, i.e., to give an effec-
tive false alarm rate (as measured by the empirical percentage
of surrogates features falling outside the stationarity ellipse)
which agrees with the prescribed level of confidence v. This
is reported in Fig. 3, as a function of the standard deviation of
the added phase noise, in both cases of WGNTSs and WLTSs,
and for 3 values of v. The simulations have been conducted
with 1,000 realizations of an AR(2) process as test signal,
leading to the 95% coverages displayed as shaded areas. For
each realization, 50 surrogates have been generated and used
to compute the elliptic domains associated to the null hypoth-
esis of stationarity with the prescribed level of confidence.
This domain is then used to test the stationarity of the cur-
rent AR signal. The overall result is that a high level of noise
(with the limiting case of standard surrogates displayed at the
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Fig. 3. Reproduction of the null hypothesis of stationarity for
various confidence levels v (see legend) and the two types of
transitional surrogates (WGNTSs in solid blue and WLTSs in
dashed red).

extreme right of the diagram) tends to make the test slightly
pessimistic, while the limit 0 — 0 leads of course to a degen-
erate situation since all surrogates tend to identify to the actual
test signal. In between these two extremes, it turns out that the
performance can be uniformly improved (w.r.t. to both v and
the type of transitional surrogates) by choosing o ~ 1.

Under HI — Inspired by the examples considered in [2], the
second family of results deals with a signal whose degree of
nonstationarity can be varied, namely

x[n] = [1 +m cos(2mn/Ny)].e[n],1 <n < N,

where e[n] stands for standard (stationary) WGN, 0 < m < 1
is the index of the amplitude modulation and the ratio between
the observation length and the modulation period is fixed to
N/Ny =~ 5 s0 as to guarantee some easily observable nonsta-
tionarity when m is large enough. Under this “H1” hypoth-
esis, the probability of estimating the signal as stationary is
estimated as before (except that simulations have been run on
200 realizations only for each point) and the result is plotted
in Fig. 4 as a function of both the index m and the standard
deviation o of the added noise.> What is observed is again a
transition in the performance, with a collapse of the different
curves onto the one obtained with “classical” surrogates when
o exceeds, as was the case under HO, the critical value 1.

It follows from Figs. 3 and 4 that, as expected, transitional
surrogates end up with some transitions in performance, re-
garding both HO and H1. The interpretation is quite clear
since, as illustrated in Fig. 2, varying the level of the added
phase noise results in a moving of the stationarity ellipse in
the feature plane, and thus the probability of falling within it
is varied accordingly.

20nly the performance with WGNTSs is reported here for the sake of
clarity and because of space limitation, but WLTSs lead to similar results.
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Fig. 4. Performance in nonstationarity detection for various
standard deviations o (see legend) of the added phase noise
and a confidence level v = 15%.

3. CONCLUSION

A modified version of surrogates has been proposed, which
offers the possibility of better tuning stationarity tests. In
particular, it is worth noticing that, at least in the examples
considered in Sect. 2.4, the false alarm rate can be set at the
prescribed level without sacrificing detection. Not all the pos-
sibilities of the method have been explored here. In the WLTS
case for instance, one could think of going beyond varying
only the phase noise level by using simultaneouly different
values of H for controlling the correlation of the phase se-
quence. Alternatively, one can also consider a distribution of
o’s in order to enlarge the stationarity domain. This is under
current investigation.
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