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Abstract—Sparse hyperspectral unmixing from large spec-
tral libraries has been considered to circumvent limitations of
endmember extraction algorithms in many applications. This
strategy often leads to ill-posed inverse problems, which can
greatly benefit from spatial regularization strategies. However,
existing spatial regularization strategies lead to large-scale nons-
mooth optimization problems. Thus, efficiently introducing spa-
tial context in the unmixing problem remains a challenge, and a
necessity for many real world applications. In this paper, a novel
multiscale spatial regularization approach for sparse unmixing is
proposed. The method uses a signal-adaptive spatial multiscale
decomposition based on segmentation and over-segmentation
algorithms to decompose the unmixing problem into two simpler
problems, one in an approximation image domain and another in
the original domain. Simulation results using both synthetic and
real data indicate that the proposed method outperforms state-
of-the-art Total Variation-based algorithms with a computation
time comparable to that of their unregularized counterparts.

Index Terms—Hyperspectral data, sparse unmixing, spatial
regularization, multiscale, superpixels.

I. INTRODUCTION

Hyperspectral unmixing is at the core of many remote
sensing and earth observation applications [1]. The limited
spatial resolution of hyperspectral devices often mixes the
spectral contributions of different pure materials, named end-
members, in the scene [2]. The mixing process conceals
crucial information relating the endmembers and their spatial
disposition. Hyperspectral unmixing (HU) aims to solve this
problem by separating the hyperspectral image (HI) into a
collection of endmembers and their fractional abundances [1].

Notwithstanding the relevance of more complex aspects in
modeling the mixing process such as nonlinearity [3] and
spectral variability [4], most unmixing methods use a simple
linear mixing model (LMM). The LMM considers an observed
reflectance vector (a pixel) to be a convex combination of
endmembers [2]. The combination coefficients are termed
abundances, as each one can be interpreted as the propor-
tion of the pixel spectrum contributed by the corresponding
endmember [2]. The LMM leads to computationally efficient
solutions and yields high quality unmixing results for several
applications.

This work has been supported by the National Council for Scientific and
Technological Development (CNPq).

R.A. Borsoi, T. Imbiriba and J.C.M. Bermudez are with the Depart-
ment of Electrical Engineering, Federal University of Santa Catarina, Flo-
rianópolis, SC, Brazil. e-mail: raborsoi@gmail.com; talesim@gmail.com;
j.bermudez@ieee.org. C. Richard is with the Université Côte d’Azur, Nice,
France (e-mail: cedric.richard@unice.fr), Lagrange Laboratory (CNRS, OCA).

Manuscript received Month day, year; revised Month day, year.

The problems of endmember extraction and unmixing are
interrelated and addressing them jointly is not always trivial.
Most endmember extraction algorithms rely on the existence
of pure pixels or on the data not being heavily mixed [3], [5].

An interesting strategy to circumvent such issues is to model
the observed pixel as a linear combination of a large library of
endmembers estimated a priori [1]. In this case, the number
of endmembers in a given scene is usually much smaller than
the size of the spectral library. Hence, the unmixing problem
becomes a sparse regression problem that consists of finding a
small subset of the library endmembers which best represent
all the pixels in the image. This problem is often efficiently
solved through the use of sparsity promoting regularizations,
resulting in the so-called sparse unmixing techniques [6].

Despite the success of standard sparse unmixing meth-
ods [6], the use of large spectral libraries leads to the unmixing
problem being ill-posed, which makes the solution very sen-
sitive to noise. Regularization techniques have been shown to
significantly improve the performance of both non-sparse [7],
[8] and sparse unmixing methods [9] by exploiting the corre-
lation between different pixels in the HI. The Total Variation
(TV) regularization, for instance, promotes solutions that are
spatially piecewise homogeneous without compromising sharp
discontinuities between neighboring pixels [9].

Most effective spatial regularization techniques, however,
require a massive increase in computational cost. For instance,
TV [9] leads to a large non-smooth convex optimization
problem, which needs to be solved using variable splitting
techniques. More recently, regularization strategies exploiting
nonlocal redundancy in images were also considered, leading
to even larger optimization problems [10]. This is incompatible
with recent demands to timely process the vast amounts of
remotely sensed data required by many real world applica-
tions [11]. Such demands recently sparked significant interest
on efficient unmixing strategies with online processing capa-
bility [12]. This evidences the need for fast low complexity
unmixing strategies that yield state of the art performance.

This paper introduces a novel multiscale spatial regular-
ization approach for sparse unmixing. We propose a fast
Multiscale sparse Unmixing Algorithm (MUA) that promotes
piecewise homogeneous abundances without compromising
sharp discontinuities among neighboring pixels. The proposed
method uses a signal-adaptive spatial multiscale decomposi-
tion of the linear mixture model. The unmixing problem is
decomposed into two different problems in distinct domains:
one in an approximation scale representation constructed using
segmentation or over-segmentation algorithms, and another
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in the original image domain. Spatial contextual information
of fractional abundances is initially obtained by solving an
unregularized sparse unmixing problem in the approximation
scale. This information is then mapped back to the original
image domain by means of an appropriately defined conjugate
transformation of the multiscale decomposition. The spatial
contextual information is then enforced on the solution of the
original unmixing problem through a novel and computation-
ally efficient regularization penalty. Simulation results using
both synthetic and real data indicate that the proposed method
outperforms TV-regularized solutions [9], while requiring a
computational time comparable to that of the unregularized
algorithm [6].

The paper is organized as follows. In Section II, we
briefly introduce the sparse unmixing problem and present
the proposed multiscale formulation. Simulation results using
synthetic and real data are presented in Section III. Section IV
presents the conclusions.

II. SPARSE LINEAR UNMIXING WITH A MULTISCALE
SPATIAL REGULARIZATION

Let Y ∈ RL×N denote the observed hyperspectral image
with L bands and N pixels, and A ∈ RL×P denote a spectral
library having P spectral signatures. Instead of extracting the
endmembers directly from the HI Y , sparse linear unmixing
attempts to find an optimal subset of samples from the spectral
library A that best represents all the mixed pixels in the image,
namely,

Y = AX +N , (1)

where X ∈ RP×N is the fractional abundance matrix, each
column of which determines the composition of one image
pixel as a linear combination of spectral samples from A, and
N ∈ RL×N denotes the joint contribution of modeling errors
and noise. The fractional abundance matrix X is frequently
subject to physical constraints imposed to the model, such as
the non-negativity (i.e. xi,j ≥ 0, ∀i, j, denoted by X ≥ 0)
and the sum-to-one constraints (i.e. 1>X = 1>). Since only
few of the spectral signatures of A are likely to contribute to
the observed spectra of each pixel, the matrix X is usually
sparse. A common approach to solve the unmixing problem
is to represent it as a spatially regularized sparse regression
problem [9]. These techniques, however, are computationally
very expensive. In this section, we propose a multiscale
regularization procedure which introduces spatial regularity
into the abundance maps at a very low computational cost.

The proposed spatially regularized unmixing scheme con-
sists of two steps. First, we transform the original image from
the original domain (D) to an approximation (coarse) scale (C)
to extract the most relevant inter-pixel contextual information.
Then, pixels at the coarse scale are unmixed independently
from each other. Next, we apply a conjugate transformation
to the abundance estimates obtained at the coarse scale to
convert the coarse estimate back to the original image domain.
This procedure yields an accurate estimate of the low-level
image structures, which is then used to regularize the unmixing
process applied to the original image to promote the spatial
dependency between neighboring pixels.

Consider a linear operator W ∈ RN×K , K < N that
implements a spatial transformation of both the HI and the
abundance map to the approximation domain. Then,

YC = Y W ; XC = XW , (2)

where YC ∈ RL×K and XC ∈ RP×K are the coarse
approximations of the original image Y and of the abundance
matrix X , respectively. A possible choice for W might be a
wavelet transform employing the first K approximation scales
of the wavelet decomposition of Y . However, the wavelet
transform is feature-agnostic. It does not distinguish between
pixels in perceptually different image regions. Its application
may result in blurred image edges. Instead, we shall consider
a signal-dependent transformation, that is, W ≡ W (Y ),
which groups pixels into perceptually meaningful regions (not
necessarily uniform), preserving image contours and leading
to sharp transitions.

Multiplying (1) by W from the right, the unmixing problem
can be re-cast into the approximation domain. The resulting
unmixing problem is as follows:

X̂C = argmin
XC≥0

1

2
‖YC −AXC‖2F + λC‖XC‖1,1 . (3)

We shall now use X̂C to regularize the original unmixing
problem. To this end, we define a conjugate transform W ∗ ∈
RK×N that converts images from the approximation domain
C back to the original image domain D:

X̂D =X̂CW
∗ , (4)

whereX̂D ∈ RP×N is the low-resolution approximation of the
abundances in the original image domain, which captures cor-
relations between neighboring pixels. Note that transformation
W is generally not invertible, that is, WW ∗ 6= I .

Finally, we use the coarse abundance matrix X̂D to reg-
ularize a sparse unmixing problem in the original image
domain, where X̂ is obtained as the solution to the following
optimization problem:

min
X≥0

1

2
‖Y −AX‖2F + λ‖X‖1,1 +

β

2
‖X̂D −X‖2F , (5)

where β is a regularization parameter. This formulation re-
quires no explicit consideration of dependencies between pairs
of pixels as required by TV. This leads to a simpler optimiza-
tion problem, reducing both the computational complexity and
the convergence time, as will be verified in Section III.

Note that both optimization problems (3) and (5) are par-
ticular cases of the following problem

min
z

f1(z) + f2(z) , (6)

where f1, f2 : Rn → R+∪{∞} are closed, proper and convex
functions. For instance, problem (5) can be written in the
equivalent form (6) by selecting functions f1 and f2 as

f1 ≡
1

2
‖Y −AX‖2F +

β

2
‖X̂D −X‖2F

f2 ≡ λ‖X‖1,1 + ι+(X) ,
(7)

where ι+(·) is the indicator function of the set RP×N
+ , that is,

ι+(X) = 0 if X ≥ 0 and ι+(X) =∞ otherwise.
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The Alternating Direction Method of Multipliers (ADMM)
method decomposes a problem in the form (6) into a sequence
of simpler problems, which can be solved efficiently [13].
The ADMM method can then be used to solve (5), with the
resulting procedure detailed in Algorithm 1 [6], [13], where
soft denotes the component-wise soft thresholding operator
soft(y, τ) = sign(y)max{|y|−τ, 0}. Note that problem (3) can
be solved in the same way by setting β = 0 and substituting
Y ≡ Y C , X ≡ XC , and λ ≡ λC in Algorithm 1. The global
algorithm of the proposed method, called Multiscale sparse
Unmixing Algorithm (MUA), is displayed in Algorithm 2.

Algorithm 1: ADMM method for solving (5)
Input : Y , A, parameters λ, β, and µ > 0 and matrices

U0,V 0 ∈ RP×N .
Output: The estimated abundance matrix X̂ .

1 Set i = 0 ;
2 while stopping criterion is not satisfied do
3 Ω = A>Y + µ(U i + V i) + βX̂D ;
4 Xi+1 =

(
A>A+ (µ+ β)I

)−1
Ω ;

5 U i+1 = max{0, soft(Xi+1 − V i, λ/µ)} ;
6 V i+1 = V i − (Xi+1 −U i+1) ;
7 i = i+ 1 ;
8 end
9 return X̂ = Xi+1;

Algorithm 2: MUA
Input : Y , A, W , parameters λC , λ, and β.
Output: The estimated abundance matrix X̂ .

1 Compute Y C = Y W ;
2 Find X̂C by solving (3) using Algorithm 1 with β = 0, λ ≡ λC ,

Y ≡ Y C and X ≡XC ;
3 Compute X̂D using (4);
4 Find X̂ by solving (5) using Algorithm 1;
5 return X̂;

A. Designing the multiscale transformation
An appropriate choice of transformation W is of paramount

importance for the proposed method to achieve a good recon-
struction accuracy. The objectives of this transform can be
summarized as 1) grouping image pixels that are spatially
adjacent and semantically similar, that is, that belong to
homogeneous regions, and 2) preserving image contours by
not grouping pixels that belong to different image structures
or features. Additionally, it must be computationally efficient.

Techniques such as the K-means have been explored for
introducing regularity into the solution of inverse problems [7].
However, K-means fails to effectively explore local spatial
regularity of the image, which is an important contextual infor-
mation of HIs. Moreover, spectrally similar pixels might share
different abundance attributes. Hence, spectral-only methods
such as the K-means tend to group pixels that are semantically
distinct, especially in noisy scenarios. Therefore, both spatial
and spectral information should be explored to obtain good
results.

To explore spatial information while grouping semanti-
cally similar pixels accounting for image discontinuities, we
propose to construct W using image segmentation or over-
segmentation algorithms [14], [15]. Image segmentation meth-
ods decompose the observed image into a set of contiguous

homogeneous regions with contextually similar spatial infor-
mation, typically consisting of objects which are separated by
image borders [14]. Image segmentation often creates groups
of pixels of heterogeneous sizes, corresponding to both small
and large objects in the same image. Although this allows one
to represent large regions with homogeneous abundance char-
acteristics without compromising smaller objects, it can lead to
grouping pixels that share different abundance characteristics
(even if spectrally similar). As an alternative to circumvent
this issue, we also explore over-segmentation techniques,
which attempt to divide the observed image into a larger
number of regions with relatively homogeneous sizes [15].
Although over-segmentation methods partition large objects
into many smaller segments, they provide an increased ability
to adequately represent image borders and reduce the chance
of grouping pixels with different contextual information. Su-
perpixel algorithms are a popular and efficient technique for
image over-segmentation [15].

We choose the transformation W to be an (over)-
segmentation of the image. More precisely, Y W computes an
(over)-segmentation of the image Y , and returns the average of
all pixels inside each segmented region or superpixel. Note that
the resulting pixels do not lie on a uniform sampling grid. The
conjugate transform, YCW ∗, takes each segment in YC and
attributes its value to all pixels of the uniform image sampling
grid that lie inside the corresponding region. The successive
application of both transforms, WW ∗ effectively consists in
averaging all pixels inside each segment of the input image.
The decomposition of the Cuprite image using a segmentation
and an over-segmentation algorithm is illustrated in Fig. 1.

HS Image Segmentation Over-Segmentation
Figure 1. Coarse-scale decomposition of a section of the Cuprite image for
bands 50, 80 and 100 using the segmentation algorithm in [14] and the over-
segmentation algorithm in [15], with 950 and 2000 segments, respectively.

III. RESULTS

We compare the performances of the proposed MUA, the
Total Variation (SUnSAL-TV), the spatially unregularized
(SUnSAL) and the S2WSU algorithms [6], [9], [16], both in
terms of reconstruction error and computational complexity.
The selection of these algorithms comes naturally since MUA,
SUnSAL and SUnSAL-TV share the same sparse regression
formulation, and S2WSU is considered a state-of-the-art al-
gorithm for library-based sparse unmixing. For the proposed
method, we compare two choices for the transformation
W : 1) a binary partition tree based segmentation algorithm
(BPT) [14], and 2) the simple linear iterative clustering (SLIC)
over-segmentation method [15]. Finally, we consider also the
solution using the K-means algorithm, which is not effective
at taking local spatial information into account1.

1SLIC and K-means were implemented using the Euclidean distance
between reflectance vectors (HI pixels).
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We considered a synthetic library A1 ∈ R224×240 generated
by selecting a subset of 240 materials from the USGS library
such that the angle between any pair of spectral signatures was
at least 4.44 degrees.

Table I
SRE RESULTS FOR UNMIXING DATA CUBES DC1 AND DC2.

DC1 data cube

SNR SUnSAL SUnSAL-TV S2WSU MUAK-means MUABPT MUASLIC

20 dB 4.54 dB 9.42 dB 7.70 dB 9.96 dB 13.39 dB 11.35 dB

30 dB 8.91 dB 14.44 dB 15.49 dB 14.02 dB 18.26 dB 15.73 dB

DC2 data cube

SNR SUnSAL SUnSAL-TV S2WSU MUAK-means MUABPT MUASLIC

20 dB 4.27 dB 11.61 dB 9.39 dB 12.69 dB 14.08 dB 14.88 dB

30 dB 10.48 dB 17.97 dB 21.72 dB 17.42 dB 16.92 dB 18.46 dB

A. Simulation results using synthetic data sets

For the simulations presented in this section two spatially
correlated synthetic data cubes DC1 and DC2 were built
using 5 and 9 endmembers, respectively, selected from li-
brary A1. DC1 has 75×75 pixels and its abundance map
is composed of square regions distributed uniformly over a
background in five rows. Data cube DC2 has 100×100 pixels
and its abundance maps were sampled according to a Dirichlet
distribution centered at a Gaussian random field, leading to
piecewise smooth maps that also have steep transitions. For
both datacubes, the generated HIs were contaminated by
white Gaussian noise, with signal-to-noise ratios (SNR) of 20
and 30dB. The quality of the reconstruction of the spectral
mixtures was evaluated using the signal to reconstruction error,
defined as SRE = 10 log10(E{‖X‖2F }/E{‖X −X̂‖2F }) [9].

To find the optimal parameters for the selected algorithms
we performed a grid search for each dataset, and the pa-
rameters leading to the best SRE results for each method
were selected. For the MUA method, the parameter search
occurred in the intervals λC ∈ [0.0001, 0.05], λ ∈ [0.001, 0.1]
and β ∈ [0.007, 30], while the cluster sizes were selected
among the integer values

√
N/K ∈ {3, . . . , 15}. For the

SUnSAL, SUnSAL-TV and S2WSU algorithms, the parameter
ranges were selected according to those reported in the original
work in [9]. Due to space limitations, the selected parameters
are available at [17]. The SRE achieved by the SUnSAL,
SUnSAL-TV, S2WSU, K-means and MUA are shown in
Table I for both SNR values. Samples of the reconstructed
abundance maps for both data cubes and SNRs are shown in
Figs. 2 and 3 for a qualitative comparison.

The computational complexity of the algorithms was eval-
uated through their execution times. SUnSAL, SUnSAL-TV,
S2WSU, BPT and SLIC were implemented using the codes
made available by the authors. The algorithms were imple-
mented in Matlab on a desktop computer equipped with an
Intel Core I7 processor with 4.2Ghz and 16Gb RAM. The
results are shown in Table II.

1) Discussion: It can be seen from Table I that the proposed
algorithm can provide significantly better performance than
the SUnSAL-TV algorithm for both data cubes. The BPT

Table II
AVERAGE EXECUTION TIME (IN SECONDS) OF EACH ALGORITHM

SUnSAL SUnSAL-TV S2WSU MUAK-means MUABPT MUASLIC

DC1 2.57 s 58.24 s 24.21 s 2.88 s 4.19 s 2.66 s
DC2 4.24 s 92.1 s 42.41 s 3.69 s 4.94 s 4.04 s
Real

Image 184.8 s 1145.8 s 469.5 s 84.9 s 77.1 s 101.5 s

0

0.5

1

0

0.5

1

True SUnSAL-TV S2WSU MUA (BPT) MUA (SLIC)

Figure 2. Abundance maps estimated by the different unmixing methods for
the 2nd endmember of data cube DC1. From top to bottom: SNR of 20 and
30dB.

segmentation-based transformation provided a variable perfor-
mance, yielding very good results for DC1, but a performance
closer to SUnSAL-TV for DC2, especially for SNR=30dB.
This indicates a considerable sensitivity to the image content.
The results obtained using SLIC, on the other hand, indicate
a more regular performance, with significantly better results
than SunSAL-TV for both data cubes. Although the S2WSU
presented the best SRE result for DC2 with SNR of 30dB, the
method is very sensitive to variations of the noise level, as can
be seen for both datasets. Finally, we note that a regularization
based on the K-means algorithm performed only similarly to
the SUnSAL-TV method, and significantly worse than the
proposed transformations.

Figs. 2 and 3 show samples of the abundance maps of data
cubes DC1 and DC2 estimated by the SUnSAL-TV, S2WSU
and MUA algorithms using BPT and SLIC transformation,
which provided the best quantitative performance, except for
the DC2 at 30dB where the S2WSU produced a comparable
map. However, the performance degradation of the S2WSU
is clear when the SNR is decreased. The results of the MUA
algorithm were significantly better than those of the SUnSAL-
TV algorithm. This difference is most noticeable for an SNR
of 20dB, where the resulting abundance maps are much closer
to the ground truth than those estimated by the SUnSAL-TV.

0

0.5

1

0

0.5

1

True SUnSAL-TV S2WSU MUA (BPT) MUA (SLIC)

Figure 3. Abundance maps estimated by the different unmixing methods for
the 1st endmember of data cube DC2. From top to bottom: SNR of 20 and
30dB.
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In terms of computational cost, MUA performed signifi-
cantly better than SUnSAL-TV, with execution times com-
parable to those of SUnSAL algorithm, and, on average, 19
and 10 times smaller than those of SUnSAL-TV and S2WSU
respectively. These results illustrate the effectiveness of the
proposed regularization method both in terms of quality and
computational cost.
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SUnSAL-TV S2WSU MUA (BPT) MUA (SLIC)

Figure 4. Fractional abundance maps estimated for the Cuprite image. From
top to bottom: Alunite, Buddingtonite, and Chalcedony.

B. Simulation results using real image
In this experiment, we consider a well-known region of the

Cuprite data set with 250×191 pixels. The spectral library
A ∈ R188×498 was built using the spectral signatures in
the USGS library after removing water absorption and low
SNR spectral bands, resulting in 188 bands. The parameters
of the algorithms were selected empirically for MUA, and set
identically to those reported in [9] for SUnSAL and SUnSAL-
TV, and for the S2WSU we used λswsp = 7× 10−5. Since the
true abundance maps are unavailable for this HI, we compare
the fractional abundance maps of three dominant materials
(Alunite, Buddingtonite, and Chalcedony) estimated using the
three algorithms. The results are shown in Fig. 4.

Although the unmixing results for SUnSAL-TV, S2WSU,
and MUA were similar, it can be observed that the TV regular-
ization tends to yield an over-smooth visual effect. This is not
observed in the results using S2WSU and MUA (especially for
the over-segmentation transformation) which produce spatially
consistent abundance maps without compromising the fine
variability and the intricate structures in the image. These
results again indicate the effectiveness of the proposed spatial
regularization. The computational times are shown in Table II,
and illustrate again the considerably lower complexity of MUA
when compared to SUnSAL-TV and S2WSU. It also runs
significantly faster than the SUnSAL algorithm due to the
faster convergence rate achieved with the use of proposed
regularization. Further simulations with different real datasets
are also available at [17].

IV. CONCLUSIONS

In this paper, we presented a novel multiscale methodology
to introduce spatial information in sparse HU problems. It

decomposes the spatially regularized unmixing problem into
two simple, low-cost problems in different image domains.
Two multiscale domain transformations were proposed based
on segmentation and over-segmentation methods, which al-
low an effective capture of spatial and spectral contextual
informations at a reasonable computational cost. Simulation
results using both synthetic and real data showed that the
proposed method outperforms state-of-the-art TV-based sparse
HU algorithms. Moreover, it requires execution times that are
an order of magnitude lower than the TV-based solution, and
comparable to or even smaller than those of unregularized
methods.
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