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ABSTRACT

Detecting change points in time series data is a challenging problem,
in particular when no prior information on the data distribution and
the nature of the change is available. In a former work, we intro-
duced an online non-parametric change-point detection framework
built upon direct density ratio estimation over two consecutive time
segments, rather than modeling densities separately. This algorithm
based on the theory of reproducing kernels showed positive and re-
liable detection results for a variety of problems.To further improve
the detection performance of this approach, we propose in this paper
to modify the original cost function in order to achieve unbiasedness
of the density ratio estimation under the null hypothesis. Theoretical
analysis and numerical simulations confirm the improved behavior
of this method, as well as its efficiency compared to a state of the
art one. Application to sentiment change detection in Twitter data
streams is also presented.

Index Terms— Non-parametric change-point detection, repro-
ducing kernel Hilbert space, kernel least-mean-square algorithm, on-
line learning, convergence analysis.

1. INTRODUCTION

Comparing probability distributions that underlie data in a past and
present interval has been proved to be an appealing tool for change
point detection (CPD). The most prominent methods derived so far
from this principle are cumulative sum (CUSUM) algorithms [2].
In their simplest form, these algorithms not only assume that the
parameter that undergoes the change is known, e.g., change in the
mean or in the variance [7], but also require its pre- and some-
times post-change values. In cases where this information is only
partially available, the generalized likelihood ratio test (GLRT) [6]
can sometimes offer a practical alternative. Non-parametric CPD
algorithms were introduced to handle scenarios where no prior in-
formation on the data distribution and the nature of the change is
available. Recent contributions focus on modeling the density ratio
over two consecutive time segments, referred to as “the importance
function”, rather than modeling densities separately [1, 9, 11]. Pa-
rameters of the importance function are learned from training data by
minimizing a divergence such as the Kullback-Leibler or the Pear-
son divergence. The main characteristic of these algorithms is their
non-parametric nature, which makes them suitable for real-world ap-
plications as they do not rely on strong model assumptions. In [3],
the authors devise an online version of the Relative Unconstrained
Least Squares Importance Fitting (RuLSIF) algorithm [11]. This al-
gorithm operates in a reproducing kernel Hilbert space (RKHS) to
deal with nonlinear models, and updates parameters in an online way
with a stochastic gradient descent strategy [12, 13, 17, 18]. Conver-
gence analysis of the online RuLSIF in [3], performed from [4, 16],

gives conditions for asymptotic unbiasedeness of the model param-
eters, i.e., the weights of kernel expansion. Nevertheless, simulation
results highlighted a model bias, i.e., approximation error, between
the density ratio and its approximation in RKHS because of the usual
lack of tunable static gain in kernel models. A consequence of this
bias is that the density ratio estimator cannot converge toward 1 un-
der the null hypothesis. Simulations also proved that the resulting
test statistic was non Gaussian with a strong asymmetry. This makes
it difficult to set a threshold to achieve a desired false alarm rate.

The aim of this communication is to introduce an alternative de-
tection statistic to [3] which does not suffer from its drawbacks. In
Section 2, we modify the original cost function in order to achieve
unbiasedness of the density ratio estimation under the null hypothe-
sis. Then we devise the new online CPD algorithm. In Section 3, we
analyze its performance. In Section 4, we illustrate the improved be-
havior of the new CPD algorithm, as well as its efficiency compared
to a state of the art one. Application to sentiment change detection
in Twitter data streams is also presented.

2. PROBLEM FORMULATION

2.1. CPD algorithm

Let {yt}t∈N be a time series in which we aim at detecting whether a
change occurred and, if affirmative, when it occurred. Let:

yt = (yt, yt+1, . . . , yt+k−1)> ∈ Rk (1)

be a subsequence of {yt}t∈N. In order to take into account any de-
pendence that may exist between successive values of this time se-
ries, we propose to proceed as commonly reported in the literature
by considering vectors {yt}t∈N as samples. We then aim at de-
tecting changes in the distribution of these samples by estimating
a model g(·) for r(y) − 1, where r(y) = p(y)/p′(y) is the den-
sity ratio between the probability density p(y) of the data on a test
interval:

Y test
t = (yt−(Ntest−1), . . . ,yt−1,yt) ∈ Rk×Ntest (2)

and the probability density p′(y) of the data on a reference interval:

Y ref
t = (yt−(Nref+Ntest−1), , . . . ,yt−Ntest

) ∈ Rk×Nref (3)

where Ntest and Nref are the number of samples in the test and refer-
ence intervals, respectively. Note that r(y) − 1 is preferred to r(y)
because the desired output of the detection statistic is then equal to 0
under the null hypothesis, i.e., the no change-point hypothesis.

Approximating r(y)−1 by a function g(·) can be performed by
minimizing the mean-squared loss [21]:

C(g) =
1

2
Ep′(y){[r(y)− 1− g(y)]2} (4)



Expanding (4) and using r(y)p′(y) = p(y) leads to:

C(g) =
1

2
Ep′(y){g2(y)}−Ep(y){g(y)}+Ep′(y){g(y)}+C (5)

where C denotes a constant value. Approximating the expected val-
ues in (5) by their empirical averages over the test and reference in-
tervals Y test

t and Y ref
t in (2)–(3) for any fixed t leads to the following

optimization problem:

min
g∈G

 1

2Nref

t−Ntest∑
i=t−(Nref+Ntest−1)

g2(yi)−
1

Ntest

t∑
i=t−(Ntest−1)

g(yi)

+
1

Nref

t−Ntest∑
i=t−(Nref+Ntest−1)

g(yi) + λΩ(‖g‖G)

 (6)

where G denotes an arbitrary reproducing kernel Hilbert space of
real-valued functions on R. Let κ(· , ·) be the reproducing kernel
of G. The term λΩ(‖g‖G) with λ ≥ 0 is a regularization term added
to promote smoothness of the solution. According to the Represen-
ter Theorem [20], the function g(·) that minimizes the regularized
empirical loss in (6) can be expressed as follows:

g(·,θ) =

t∑
i=t−(Nref+Ntest−1)

θi, κ(· ,yi) (7)

where θ is a parameter vector to learn. This model cannot be trained
efficiently from streaming data as it needs to update both θ and {yi}
as time t progresses. A standard strategy in the literature is to sub-
stitute {yi} in (7) by a fixed dictionary {yωi}

L
i=1 of size L. Sev-

eral strategies were proposed to design this dictionary from input
data [19]. They mainly consist of building it sequentially, by insert-
ing selected samples yi that improve the representation of input data
according to a criterion, e.g., coherence [18], approximate linear de-
pendence [5], or novelty [13]. To make the theoretical analysis of
the algorithm tractable, this paper focuses on the pre-tuned dictio-
nary case where the dictionary is fixed and assumed to be available:

g(·,θ) =
L∑
i=1

θi κωi(·) = θ>κω(·) (8)

where κωi(·) = κ(·,yωi) for i = 1, . . . , L are the elements of the
so-called dictionary and κω(.) = [κω1(·), . . . , κωL(·)]>.

2.2. Mini-batch and optimal solution

Substituting (8) into (6), assuming a ridge parameter space regular-
ization [20], and minimizing w.r.t. θ, we find that θ̂t is the solution
of the strictly convex quadratic optimization problem:

θ̂t = arg min
θ∈RL

Jt(θ)

with Jt(θ) =
1

2
θ>H ref

t θ − θ>htest
t + θ>href

t +
λ

2
‖θ‖2

(9)

where:

htest
t =

1

Ntest

t∑
i=t−(Ntest−1)

κω(yi) (10)

href
t =

1

Nref

t−Ntest∑
i=t−(Ntest+Nref−1)

κω(yi) (11)

H ref
t =

1

Nref

t−Ntest∑
i=t−(Ntest+Nref−1)

κω(yi)κ
>
ω(yi) (12)

Let us denote by θ∗ the optimal parameter vector that minimizes
the regularized cost function (5). Following the same steps, θ∗ is the
solution of arg minθ∈RL E{Jt(θ)}, namely,

(H ref + λI)θ∗ = htest − href (13)

where:

htest = Ep(y){κω(y)} (14)

href = Ep′(y){κω(y)} (15)

H ref = Ep′(y){κω(y) κ>ω(y)} (16)

Under the null hypothesis, p(·) = p′(·), meaning that htest = href.
This leads to:

(H + λI)θ∗ = 0 (17)

where we dropped the superscript of H ref for simplicity. We con-
clude that θ∗ = 0 since H + λI is a full rank matrix. This shows
that, unlike [3], under the null hypothesis we have g(·,θ∗) = 0. The
estimation of the density ratio r(·) is unbiased, i.e., equal to 1.

2.3. Online weights update and test statistic

The KLMS was originally designed for solving kernel-based prob-
lems of the form (9) in an online manner [18]. Let θt denote the
estimate of the minimizer at time t. The algorithm consists of the
following stochastic gradient descent step:

θt+1 = θt − µ∇̂Jt+1(θt)

= θt − µ
[
(H ref

t+1 + λI)θt − (htest
t+1 − href

t+1)
]

(18)

where µ > 0 is the step-size parameter, and ∇̂Jt+1(θt) denotes
an instantaneous estimate of the gradient of Jt+1(·) evaluated at θt.
Equation (18) is an update rule with fixed dictionary. In practice,
the dictionary can be learned in an online manner. In that case, the
update equation (18) has to be modified as described in [3].

We propose, as a test statistic, to consider the density ratio es-
timator computed at the sample just after the reference and test es-
timation intervals, to avoid potential bias due to correlation in the
data. This means that we consider:

g(yt+1) = θ>t κω(yt+1) (19)

where θt is updated according to (18) at time t.

3. CONVERGENCE ANALYSIS

We shall now analyze the behavior of the algorithm under the null
hypothesis for i.i.d Gaussian input data yt. We shall assume that the
dictionary has been preset, i.e., {yωi}

L
i=1 are deterministic.



To perform the analysis, we introduce the Modified Indepen-
dence Assumption (MIA) [14] which suggests thatH ref

t+1 is statisti-
cally independent of θt. Although not true in general, this assump-
tion is commonly used for analyzing adaptive constructions as it al-
lows to simplify the derivation without constraining the conclusions.

3.1. Mean analysis

Using the update rule (18), we obtain the following recursion for θt:

θt+1 =
[
I − µ(H ref

t+1 + λI)
]
θt − µe◦t (20)

with e◦t = −(htest
t+1 − href

t+1). Taking the expectation of both sides
of (20), using E{e◦t } = 0 and the MIA we get the mean weight
model:

E{θt+1} =
[
I − µ(H + λI)

]
E{θt} (21)

Then, for any initial condition, algorithm (18) asymptotically con-
verges in the mean if the step-size µ is chosen to satisfy:

µ <
2

ζmax{H + λI} (22)

where ζmax{·} stands for the maximal eigenvalue of its matrix ar-
gument. In this case, (21) implies limt→∞ E{θt} = 0 = θ∗. This
means that, unlike [3], θt is asymptotically unbiased.

Taking the expectation of (19) and using the MIA, we obtain the
mean of the test statistics g(yt+1):

E{g(yt+1)} = h>E{θt} (23)

Assuming (22) holds, under the null hypothesis, the asymptotic un-
biasedness of θt implies limt→∞ E{g(yt+1)} = 0 = 1 − r(yt).
That is, asymptotic estimation of the density ratio r(yt) is unbiased,
which is an advantage of the proposed algorithm compared to [3].
Initializing (18) with θ0 = 0, namely, E{θ0} = 0, note that (21)
implies E{θt} = 0 for all t. Consequently E{g(yt)} = 0, meaning
that the estimation of the density ratio r(yt) = 1 is unbiased under
the null hypothesis for all t, without initial transient phase.

3.2. Computation ofH and h

To proceed further with the analysis, we now need to specify a repro-
ducing kernel. We shall consider the Gaussian kernel in the sequel:

κ(y,y′) = e
− ‖y−y′‖2

2σ2 (24)

where σ denotes the kernel bandwidth. The entries of (15) and (16)
can be computed for Gaussian distributed entries yi ∼ N (m,R)
using the moment generating function of a quadratic form of a Gaus-
sian vector [15]:

[H]`,q = e
−
‖yω`‖

2+‖yωq ‖
2

2σ2 Ψ
(−1

σ2
, Ik, − (yω` + yωq ), m, R

)
[h]` = e

−
‖yω`‖

2

2σ2 Ψ
( −1

2σ2
, Ik, − 2yω` , m, R

)
with `, q ∈ {1, . . . , L}, and

Ψ(s,W , b,m,R) = |I − 2sWR|−
1
2 exp

(
s
[
(m>Wm+ b>m)

+
s

2
‖2Wm+ b‖2R(I−2sWR)−1

])

3.3. Mean squared analysis

We denote byCθ,t the correlation matrix of θt, namely:

Cθ,t = E{θtθ>t } (25)

To estimate the variance of the test statistics, we need to calculate
Cθ,t. Post-multiplying (20) by its transpose, taking the expectation,
and using the MIA, we obtain the recursive expression:

Cθ,t+1 = (1− µλ)2Cθ,t − µ(1− µλ)(HCθ,t +Cθ,tH)

+ µ2(T +Q) + µ2(Z +Z>)− µ(1− µλ)(N +N>) (26)

where:

T = E{H ref
t+1θtθ

>
t H

ref
t+1} (27)

Q = E{e◦te◦t
>} (28)

Z = E{e◦tθ>t H ref
t+1} (29)

N = E{e◦tθ>t } = 0 by MIA (30)

Computation of T :
Denoting cθ,t = vec(Cθ,t) where vec(·) refers to the standard vec-
torization operator that stacks the columns of a matrix on top of each
other, using the MIA, and vec(ABC) = (C> ⊗A)vec(B) with ⊗
the Kronecker product, we find:

T =
1

Nref
vec−1(Γcθ,t) +

Nref − 1

Nref
HCθ,tH (31)

where Γ is the (L2 × L2) matrix defined by:

Γ = E{κω(yi)κω(yi)
> ⊗ κω(yi)κω(yi)

>} (32)

Computation ofQ :
Under the null hypothesis,Q is given by:

Q =
Nref +Ntest

Nref Ntest
(H − hh>) (33)

Computation of Z :
In the same way as T , we find that:

Z =
1

Nref

(
vec−1(∆bθ,t)− hb>θ,tH

)
(34)

where ∆ is the (L2 × L) matrix defined by:

∆ = E{κω(y)κω(y)> ⊗ κω(y)} (35)

and bθ,t = E{θt}.
The variance of the test statistics g(yt) can now be calculated using
these results. In particular:

E{g(yt+1)2} = E{(κω(yt+1)>θt)
2} (36)

= tr(HCθ,t) (37)

Neglecting the bias terms bθ,t in (26) and using standard results
on Kronecker products, vectorizing (26) leads to:

cθ,t+1 = Scθ,t + µ2vec(Q) (38)

with:

S = (1−µλ)2I+
µ2

Nref
(Γ+(Nref−1)H⊗H)−µ(1−µλ)(H⊕I)

where H ⊕ I = H ⊗ I + I ⊗H . The stability of matrix S then
ensures the mean-square stability of the algorithm. If the algorithm
is mean-square stable, then cθ,t converges to:

cθ,∞ = µ2(I − S)−1vec(Q) (39)

The variance of the test statistics follows from this result via (36).



Fig. 1. Mean of the detection statistics: Monte Carlo and model.

Fig. 2. Variance of the detection statistics: Monte Carlo and model.

4. EXPERIMENTS

4.1. Monte Carlo validation

This section validates the models derived in Section 3 by comparing
them to Monte Carlo simulations. In these experiments, the obser-
vations yn were two-dimensional i.i.d. zero-mean Gaussian vectors,
with standard deviation and correlation equal to 0.25. The kernel
bandwidth of the Gaussian kernel was set to σ = 0.25. A dictionary
withL = 16 elements was designed randomly by sampling the same
distribution as yn. The regularization parameter λ was set to 10−3.
The step-size µ was set to 10−2. The lengths of the reference and
test windows were set to Nref = Ntest = 250.

Figure 1 compares the behavior over time of the means of the de-
tection statistics, E{g(yt)}, of the proposed algorithm (18) and [3].
The new algorithm will be denoted as NOUGAT (Nonparametric
Online chanGepoint AlgoriThm) in the sequel. Both algorithms
were initialized with a vector θ0 of L ones. We observe in Fig. 1
that the theoretical curves match well the actual performance of both
algorithms. For NOUGAT, E{g(yt)} converged to 0 as expected,
while Algorithm [3] was affected by a bias and converged to≈ 0.81.
This first result illustrates the difficulty in setting a threshold for CPD
when using [3], unlike NOUGAT which provides an unbiased es-
timation of the density ratio. Figure 2 shows the variance of the
detection statistics for NOUGAT, evaluated with Monte Carlo sim-
ulations and theoretically with (36), and the variance of [3] eval-
uated with Monte Carlo simulations. Figure 2 confirms that the
theoretical curve matches well the actual performance. This result
also shows that the variance of NOUGAT is lower than [3], which
implies a lower false alarm rate. Finally, Fig. 3 compares the his-
tograms of the detection statistics of the proposed algorithm and [3].
The histogram on the left exhibits a single mode centered at 1 with
a strong asymmetry. On the contrary, the histogram of NOUGAT
on the right shows a normal shape centered, as expected, around 0.
The orange curve corresponds to a zero-mean Gaussian distribution
with the variance of the samples. This simulation corroborates the
assumption of a zero-mean normal distribution for g(yt+1). This
property is important for setting a threshold that may guarantee a
given false alarm rate.

Fig. 3. Histogram of the detec. statistics. Left: [3], right: NOUGAT.
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Fig. 4. Detection of sentiment change in Twitter data stream.

4.2. Application to detection of sentiment change

NOUGAT was compared to a a non-parametric CPD method of the
literature, MA [10], that compares an empirical average over an in-
terval of Ntest samples with one computed over an interval of Nref

samples that comes before. Both algorithms were used to detect a
change of opinion in a stream of tweets. The data set, called “Twit-
ter US Airline Sentiment”, available on Kaggle [8], contains tweets
related to the US Airline in February 2015 manually tagged as posi-
tive, negative and neutral opinions. Raw tweets were first cleaned
from non-ASCII characters. Stop words from Natural Language
Toolkit corpus were also removed. Finally, tweets were tokenized
into vectors of size k = 11251. The data stream yt was obtained
by concatenating the first 9178 positive tweets and the 2363 nega-
tive tweets. The dictionary consisted of the first L = 100 positive
tweets. The algorithm parameters were set as follows: µ = 10−1,
λ = 10−2, σ2 = 1.3, Nref = Ntest = 100 and θ0 = 0.
Window lengths were set to Nref = Ntest = 100 for MA. For fair
comparison, kernelized data κω(yt) were fed to MA algorithm. Our
own derivations showed that the CPD test performed by this algo-
rithm, called MA with kernels, reduces to compare ‖htest

t+1−href
t+1‖2

to a threshold. This means that MA with kernels does not use co-
variance informationH ref

t+1 to make a decision.
Figure 4 presents the detection statistics of MA, MA with ker-

nels, and NOUGAT. These results show that all algorithms detected
the change point at t = 9178, but MA produced 8 false alarms
whereas NOUGAT did not. MA algorithm with kernels performed
better than MA, but the variance of its detection statistics was sig-
nificantly larger than NOUGAT. This experiment also confirms the
unbiasedness of the density ratio estimation provided by NOUGAT
under the null hypothesis.
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