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1. INTRODUCTION

The rain attenuation plays a major role in the design of satellite-to-earth links operating at high frequencies such as Ka band
and Ku band. The signal suffers from a strong attenuation during the propagation path as raindrops absorb and scatter radio
waves, which results in an increase of transmission error and reduction of the system availability [1]. Predicting rainattenuation
is one of the vital steps to be considered when analyzing a satellite communication link. Adaptive code mechanism or adaptive
power control can be used to increase the transmission efficiency and to reduce the transmission power, on condition thatthe
attenuation is predicted in some way.

Several models of the rain attenuation were introduced in [2] : spectral (SPL) model, two-sample model (TSM), second-
order Markov chain (2MC) model, N-states Markov chain model, ITALSAT data-based model and synthetic storm technique
(SST). Among these models the spectral model has a good correspondence with known properties of rain and its simplicity
allows simulations of communication link performance under the influence of rain attenuation. In [3], the conditional probability
distribution of the predicted attenuation based on the analog model was given, which allows an optimal prediction in the
statistical sense. However, simulators often operate withthe discretized model during the analysis of communicationsystem.
Predictions based on the discretized model were also studied in literature based on the filter design method [4] or on the online
prediction method [5]. In this paper, we derive the conditional distribution of the predicted attenuation and give the optimal
estimation bound based on the discretized model. The results can also be used for other systems with the similar model.

2. PREDICTION BASED ON THE DISCRETIZED SPECTRAL MODEL

2.1. Discretized spectral model

Relying on [3, 6], this spectral model partly aims at synthesizing rain attenuation series as well as scintillation timeseries.
Fig. 1 shows the relationship between a white Gaussian noiseinputw(n) and the instantaneous rain attenuationa(n) in dB
synthesized by the discrete SPL model. The digital filterH(z) is a first-order system characterized by

Fig. 1. discretized spectral model of rain attenuation

H(z) =
a+ az−1

1− dz−1

where filter coefficientsa andd depend on the parameters of prototype analog systems. The output x̃(n) can be expressed by
the difference equation

x̃(n) = aw(n) + aw(n− 1) + dx(n− 1) (1)



with varianceσ2
x̃
= 2a2

1−d
. The relation between the normalized variablex(n) and the input processw(n) is then written as

x(n) =
1

σx̃

(aw(n) + aw(n− 1)) + dx(n− 1) (2)

Due to the centered inputw(n), the output of the difference equationx(n) is also centered and has unit variance, i.e.E[x(n)] =

0 andσ2
x = 1. The final outputa(n) is obtained by passingx(n) through the nonlinear module

a(n) = exp(m+ σx(n)) (3)

wherem andσ are the parameters of this module.

2.2. The conditional pdf of a(n+M)

In this paper we shall determine the distribution of the attenuation atM instant later, conditioned by the observed values at
instantsn, n− 1, · · · , namelyP (a(n+M)|a(n), a(n− 1), · · · ). The optimal predicted value can then be estimated by taking
the expectation of this distribution. According to (1), theattenuation value to estimate at instantn+M can be expressed by

a(n+M) = exp(m+ σx(n +M))

= exp

(

m+ σ(
a

σx̃

w(n+M) +
a
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)

If x(n+M − 1) is expanded until the present instantn, the attenuationa(n+m) can be rewritten as

a(n+M) = exp

(

m+
σ
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aw(n+M) +
σ
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a
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(4)

Considering the model (3), the intermediate variablex(n) can be considered as known ifa(n) is known. LetΓ̃ = σ

σx̃

aw(n +

M) + σ

σx̃

a
∑M−1

i=1 di−1(1 + d)w(n +M − i). The expansion ofa(n+M) is expressed by the product of the following three
terms

a(n+M) = Γ ν1 ν2 (5)

where

Γ = exp(Γ̃) (6)

ν1 = exp(m+ dM (log(a(n)) −m)) (7)

ν2 = exp

(

σ

σx̃

adM−1w(n)

)

(8)

First, it should be noticed that̃Γ is a linear combination of white Gaussian variablesw(n+M),w(n+M−1), . . . ,w(n+1),

hencẽΓ follows a Gaussian distribution, with the meanµΓ̃ = 0 and the varianceσ2
Γ̃
= σ

2
a
2

σ2
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. With

the exponential functionexp(·), the random variableΓ follows a log-normal distribution

PΓ(γ) =
1√

2πσΓ̃γ
exp
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2
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)

(9)

with the meanµΓ = exp(µΓ̃ + σ2
Γ̃
/2) and the varianceσ2

Γ = exp(2µΓ̃ + 2σ2
Γ̃
)− exp(2µΓ̃ + σ2

Γ̃
)).

Secondly, at any instantn, all components in the expression ofν1, includinga(n), are known variables. Thus this item is
deterministic and it only has influence on the amplitude ofa(n+M).

In the itemν2, the white noise processw(n) is not directly known. However, asx(n) is generated by stimulatingH(z)

with w(n), the value ofw(n) can be estimated by passing it through the inverse systemH−1(z) = 1−dz
−1

a+az−1 . The unique pole
z = −1 on the unit circle indicates that this inverse system is stable but sensitive to the initial condition. Therefore a relaxation



parameterη very close to1 is introduced to improve the stability of the inverse filter.We then have

ŵ(n) =
1

a
(σx̃x(n)− σx̃dx(n− 1)− aηŵ(n− 1)) (10)

Considering the relationship betweenx(n) anda(n), the above expression can be rewritten as

ŵ(n) =
σx̃

aσ
(log(a(n))− d log(a(n− 1))− (1− d)m)− ηŵ(n− 1) (11)

With the value ofŵ(n), the itemν2 can now be considered as a deterministic term. With the threetermsΓ, ν1 andν2, we can
finally express the probability ofa(n+M) conditioned bya(n), a(n− 1), . . . , (i.e bya(n) andw(n)) as

P (a(n+M)|a(n), a(n− 1), . . . ) =
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2πσΓ̃a(n+M)
exp
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(12)

where we writeν1 asν1(a(n)) andν2 asν2(w(n)) just to emphasize that the known termsa(n) andw(n) are included in them.

2.3. Prediction with the conditional probability

The predicted value of̂a(n+M) can be estimated by taking the expectation of the conditional probability (12)

â(n+M) = ν1ν2 exp

(

σ2a2

2σ2
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(
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(13)

with the standard deviationσâ(n+M) = ν1ν2
√

exp(2σ2
Γ̃
)− exp(σ2

Γ̃
).

3. EXPERIMENT RESULTS

In this section, we illustrate the validity of our theoretical analysis. The filter coefficients ofH(z) were set toa = 3.141×10−4

andd = 0.9994. The parameters of the exponential module were set tom = −0.3 andσ = 1.7. These values correspond to
typical analog prototypes obtained from several observation sites [4].

Firstly, we tested the consistency between the theoreticalpdf (12) and that obtained by Monte-Carlo simulations. Supposing
thata(n) = 0.0521, w(n) = 0.5, the values ofa(n+M) were independently generated 10000 times withM = 1, 4, 10, and
40 respectively. Histograms associated to these prediction steps are shown in Fig. 2. Theoretical distributions calculated by
(12) are also depicted in the same figures. It can be clearly observed the theoretical results match the simulated data perfectly.

Secondly, the performance of the proposed algorithm was compared with other online prediction methods: (1) LMS algo-
rithm: the LMS algorithm is a online implementation of the optimal linear filter with sequential input. However, LMS algorithm
always suffers from an excess error due to its misadjustment[7]. (2) Log-LMS algorithm: it can be noticed that if the logarithm
operation is applied on the model defined by (3), it becomes a linear prediction problem with respect tox(n). Thus LMS algo-
rithm can be used on this series and predicteda(n+M) can be obtained by applying the reverse operation onx̂(n+M). The
simulations were executed over fifty106- sample independent sequences.The results are shown in theFig. 3. The prediction
with the mean of conditional pdf ofa(n + M) achieves the lowest mean square error and gives a performance bound for the
other algorithms
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Fig. 2. Comparison between histograms ofa(n+M) and theoretical conditional distributions.
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