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Abstract

Adaptive networks are suitable for decentralized inference tasks, e.g., to monitor complex natural phenomena.

Recent research works have intensively studied distributed optimization problems in the case where the nodes have

to estimate a single optimum parameter vector collaboratively. However, there are many important applications that

are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously,

in a collaborative manner, over the area covered by the network. In this paper, we employ diffusion strategies to

develop distributed algorithms that address multitask problems by minimizing an appropriate mean-square error

criterion with `2-regularization. The stability and convergence of the algorithm in the mean and in the mean-square

sense is analyzed. Simulations are conducted to verify the theoretical findings, and to illustrate how the distributed

strategy can be used in several useful applications related to spectral sensing, target localization, and hyperspectral

data unmixing.
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I. INTRODUCTION

Distributed adaptation over networks has emerged as an attractive and challenging research area with the advent of multi-

agent (wireless or wireline) networks. Accessible overviews of recent results in the field can be found in [1], [2]. In adaptive

networks, the interconnected nodes have to continually learn and adapt, as well as perform preassigned tasks such as parameter

estimation from observations collected by the dispersed agents. Although centralized strategies with a fusion center can benefit

more fully from information collected throughout the network but stored at a single point, in most cases, distributed strategies

are more attractive to solve inference problems in a collaborative and autonomous manner. Scalability, robustness, and low-

power consumption are key characteristics of these strategies. Applications include environment monitoring, but also modeling

of self-organized behavior observed in nature such as bird flight in formation and fish schooling [1], [3].

There are several useful distributed strategies for sequential data processing over networks including consensus strategies [4]–

[9], incremental strategies [10]–[14], and diffusion strategies [1], [2], [15]–[18]. Incremental techniques require the determination

of a cyclic path that runs across the nodes, which is generally a challenging (NP-hard) task to perform. Besides, incremental

solutions can be problematic for adaptation over networks because they are sensitive to link failures. On the other hand,

diffusion strategies are attractive since they are scalable, robust, and enable continuous adaptation and learning. In addition,

for data processing over adaptive networks, diffusion strategies have been shown to have superior stability and performance

ranges [19] than consensus-based implementations. Consequently, we shall focus on diffusion-type implementations in the

sequel. The diffusion LMS strategy was proposed and studied in [15], [16]. Its performance in the presence of imperfect

information exchange and model non-stationarity was analyzed in [20]–[22]. Diffusion LMS with `1-norm regularization was

considered in [23]–[26] to promote sparsity in the model. In [27], the problem of distributed learning in diffusion networks

was addressed by deriving projection algorithms onto convex sets. Diffusion RLS over adaptive networks was studied in [28],

[29]. More recently, a distributed dictionary learning algorithm based on a diffusion strategy was derived in [30]–[32]. This

literature mainly considers quadratic cost functions and linear models where systems are characterized by a parameter vector

in the Euclidean space. Extensions to more general cost functions that are not necessarily quadratic and to more general data

models are studied in [17], [18] in the context of adaptation and learning over networks. Moreover, several other works explored

distributed estimation for nonlinear input-output relationships defined in a functional space, such as reproducing kernel Hilbert

spaces. For instance, in [33], inference is performed with a regularized kernel least-squares estimator, where the distributed

information-sharing strategy consisted of successive orthogonal projections. Distributed estimation based on adaptive kernel

regression [34], [35] is also studied in [36]–[39], with information passed from node to node in an incremental manner. In [40],

non-negative distributed regression is considered for nonlinear model inference subject to non-negativity constraints, where the

diffusion strategy is used to conduct information exchange.

An inspection of the existing literature on distributed algorithms shows that most works focus primarily, though not

exclusively [41]–[43], on the case where the nodes have to estimate a single optimum parameter vector collaboratively. We

shall refer to problems of this type as single-task problems. However, many problems of interest happen to be multitask-

oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously and in a collaborative

manner. The multitask learning problem is relevant in several machine learning formulations and has been studied in the

machine learning community in several contexts. For example, the problem finds applications in web page categorization [44],

web-search ranking [45], and disease progression modeling [46], among other areas. Clearly, this concept is also relevant in

the context of distributed estimation and adaptation over networks. Initial investigations along these lines for the traditional
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diffusion strategy appear in [42], [47]. In this article, we consider the general situation where there are connected clusters of

nodes, and each cluster has a parameter vector to estimate. The estimation still needs to be performed cooperatively across the

network because the data across the clusters may be correlated and, therefore, cooperation across clusters can be beneficial.

Obviously, a limit case of this problem is the situation where all clusters are of equal size one, that is, each node has its own

parameter vector to estimate but shares information with its neighbors. Another limit case is when the size of the cluster agrees

with the size of the network in which case all nodes have the same parameter vector to estimate. The aim of this paper is to

derive diffusion strategies that are able to solve this general multitask estimation problem, and to analyze their performance in

terms of mean-square error and convergence rate. Simulations are also conducted to illustrate the theoretical analysis, and to

apply the algorithms to three useful applications involving spectral sensing, target localization, and hyperspectral data unmixing.

This paper is organized as follows. Section II formulates the distributed estimation problem for multitask learning. Section

III presents a relaxation strategy for optimizing local cost functions over the network. Section IV derives a stochastic gradient

algorithm for distributed adaptive learning in a multitask-oriented environment. Section V analyzes the theoretical performance

of the proposed algorithm, in the mean and mean-square-error sense. In Section VI, experiments and applications are presented

to illustrate the performance of the approach. Section VII concludes this paper and gives perspectives on future work.

II. NETWORK MODELS AND MULTITASK LEARNING

Before starting our presentation, we provide a summary of some of the main symbols used in the article. Other symbols

will be defined in the context where they are used:

x Normal font denotes scalars.

x Boldface small letters denote vectors. All vectors are column vectors.

R Boldface capital letters denote matrices.

(·)> Matrix transpose.

IN Identity matrix of size N ×N .

Nk The index set of nodes that are in the neighborhood of node k, including k.

N−k The index set of nodes that are in the neighborhood of node k, excluding k.

Ci Cluster i, i.e., index set of nodes in the i-th cluster.

C(k) The cluster to which node k belongs, i.e., C(k) = {Ci : k ∈ Ci}.
J(·), J(·) Cost functions without/with regularization.

w?, wo Optimum parameter vectors without/with regularization.

We consider a connected network consisting of N nodes. The problem is to estimate an L×1 unknown vector at each node

k from collected measurements. Node k has access to temporal measurement sequences {dk(n),xk(n)}, with dk(n) denoting

a scalar zero-mean reference signal, and xk(n) denoting an L× 1 regression vector with a positive-definite covariance matrix,

Rx,k = E{xk(n)x>k (n)} > 0. The data at node k are assumed to be related via the linear regression model:

dk(n) = x>k (n)w?
k + zk(n) (1)

where w?
k is an unknown parameter vector at node k, and zk(n) is a zero-mean i.i.d. noise that is independent of any other

signal and has variance σ2
z,k. Considering the number of parameter vectors to estimate, which we shall refer to as the number of

tasks, the distributed learning problem can be single-task or multitask oriented. We therefore distinguish among the following

three types of networks, as illustrated by Figure 1, depending on how the parameter vectors w?
k across the nodes are related:
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• Single-task networks: All nodes have to estimate the same parameter vector w?. That is, in this case we have that

w?
k = w?, ∀k ∈ {1, . . . , N} (2)

• Multitask networks: Each node k has to determine its own optimum parameter vector, w?
k. However, it is assumed that

similarities and relationships exist among the parameters of neighboring nodes, which we denote by writing

w?
k ∼ w?

` if ` ∈ Nk (3)

The sign ∼ represents a similarity relationship in some sense, and its meaning will become clear soon once we introduce

expressions (8) and (9) further ahead. Within the area of machine learning, the relation between tasks can be promoted

in several ways, e.g., through mean regularization [48], low rank regularization [49], or clustered regularization [50]. We

note that a number of application problems can be addressed using this model. For instance, consider an image sensor

array and the problem of image restoration. In this case, links in Figure 1(b) can represent neighboring relationships

between adjacent pixels. We will consider this application in greater detail in the simulation section.

• Clustered multitask networks: Nodes are grouped into Q clusters, and there is one task per cluster. The optimum parameter

vectors are only constrained to be equal within each cluster, but similarities between neighboring clusters are allowed to

exist, namely,

w?
k = w?

Cq , whenever k ∈ Cq (4)

w?
Cp ∼ w?

Cq , if Cp, Cq are connected (5)

where p and q denote two cluster indexes. We say that two clusters Cp and Cq are connected if there exists at least one

edge linking a node from one cluster to a node in the other cluster.

One can observe that the single-task and multitask networks are particular cases of the clustered multitask network. In the case

where all the nodes are clustered together, the clustered multitask network reduces to the single-task network. On the other

hand, in the case where each cluster only involves one node, the clustered multitask network becomes a multitask network.

Building on the literature on diffusion strategies for single-task networks, we shall now generalize its use and analysis for

distributed learning over clustered multitask networks. The results will be applicable to multitask networks by setting the

number of clusters equal to the number of nodes.

III. PROBLEM FORMULATION

A. Global cost function and optimization

Clustered multitask networks require that nodes that are grouped in the same cluster estimate the same coefficient vector.

Thus, consider the cluster C(k) to which node k belongs. A local cost function, Jk(wC(k)), is associated with node k and it is

assumed to be strongly convex and second-order differentiable, an example of which is the mean-square error criterion defined

by

Jk(wC(k)) = E
{∣∣dk(n)− x>k (n)wC(k)

∣∣2} . (6)

In order to promote similarities among adjacent clusters, appropriate regularization can be used. For this purpose, we introduce

the squared Euclidean distance as a possible regularizer, namely,

∆(wC(k),wC(`)) = ‖wC(k) −wC(`)‖2. (7)
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(c) Clustered multitask network

Fig. 1. Three types of networks. The single-task and multitask networks can be viewed as special cases of the clustered multitask network.

Combining (6) and (7) yields the following regularized problem P1 at the level of the entire network:

(P1) Jglob(wC1 , . . . ,wCQ) =

N∑
k=1

E
{∣∣dk(n)− x>k (n)wC(k)

∣∣2}+ η

N∑
k=1

∑
`∈Nk\C(k)

ρk` ‖wC(k) −wC(`)‖2, (8)

wherewCi is the parameter vector associated with cluster Ci and η > 0. The second term on the right-hand-side of expression (8)

promotes similarities between the wCi of neighboring clusters, with strength parameter η.

Observe from the right-most term in (8) that the regularization strength between two clusters is directly related to the

number of edges that connect them. The non-negative coefficients ρk` aim at adjusting the regularization strength but they do

not necessarily enforce symmetry. That is, we do not require ρk` = ρ`k even though the regularization term ‖wC(k)−wC(`)‖2

is symmetric with respect to the weight vectors wC(k) and wC(`); this term will be weighted by the sum ρk` + ρ`k due to the

summation over the N nodes. Consequently, problem formulation P1 inevitably leads to symmetric regularization despite the

fact that ρk` 6= ρ`k. However, we would like the design problem to benefit from the additional flexibility that is afforded by the

use of asymmetric regularization coefficients. This is because asymmetry allows clusters to scale their desire for closer similarity

with their neighbors differently. For example, asymmetric regularization would allow cluster Ck to promote similarities with

cluster C` while cluster C` may be less inclined towards promoting similarities with Ck. In order to exploit this flexibility more

fully, we consider an alternative problem formulation P2 defined in terms of Q Nash equilibrium problems as follows:

(P2)


min
wCi

JCi(wCi ,w−Ci) for i = 1, . . . , Q

with JCi(wCi ,w−Ci) =
∑
k∈Ci

E
{∣∣dk(n)− x>k (n)wC(k)

∣∣2}+ η
∑
k∈Ci

∑
`∈Nk\Ci

ρk` ‖wC(k) −wC(`)‖2
(9)

where each cluster Ci estimates wCi by minimizing JCi(wCi ,w−Ci). Note that we have kept the notation wC(k) to make the

role of the regularization term clearer, even though in formulation (9) we have wC(k) = wCi for all k in Ci. In (9), the notation

w−Ci denotes the collection of weight vectors estimated by the other clusters, i.e., w−Ci = {wCk : k = 1, . . . , Q} − {wCi}.
The Nash equilibrium of P2 satisfies the condition [51]:

wo
Ci = arg min

wCi
JCi(wCi ,w

o
−Ci) (10)

for i = 1, . . . , Q, where the notation wo
−Ci denotes the collection of the Nash equilibria by the other clusters. Problem P2 has

the following properties:
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1) An equilibrium exists for P2 since JCi(wCi ,w−Ci) is convex with respect to wCi for all i.

2) The equilibrium for P2 is unique since {JCi(wCi ,w−Ci)}Qi=1 satisfies the diagonal strict convexity property.1

3) Problems P1 and P2 have the same solution by setting the value of ρk` in P2 to that of ρk` + ρ`k from P1.

Properties 1) and 2) can be checked via Theorems 1 and 2 in [52]. Property 3) can be verified by the optimality conditions

for the two problems.

Problem P1 can be solved either analytically in closed form or iteratively by using a steepest-descent algorithm. Unfortunately,

there is no analytical expression for general Nash equilibrium problems. We estimate the equilibrium of problem P2 iteratively

by the fixed point of the best response iteration [51], that is,

wCi(n+ 1) = arg min
wCi

JCi(wCi ,w−Ci(n)) (11)

for i = 1, . . . , Q, and leads to the solution of (9). Since the equilibrium is unique and the cost function for each cluster is

convex, the solution of (9) can also be approached by means of a steepest-descent iteration as follows:

wCi(n+ 1) = wCi(n)− µ∇wCiJCi(wCi(n),w−Ci(n)) (12)

for i = 1, . . . , Q, with ∇wCi denoting the gradient operation with respect to wCi , and µ a positive step-size. We have

∇wCiJCi(wCi ,w−Ci(n)) ∝
∑
k∈Ci

(Rx,kwCi − pxd,k) + η
∑
k∈Ci

∑
`∈Nk\Ci

ρk`
(
wCi −wC(`)(n)

)
. (13)

where pxd,k = E{xk(n)dk(n)} is the input-output cross-correlation vector between xk(n) and dk(n) at node k. If some

additional constraints are imposed on the parameters to estimate, the gradient update relation can be modified using methods

such as projection [53] or fixed point iteration techniques [54]. In the body of the paper, we focus on the unconstrained case

during the algorithm derivation and its analysis. However, a constrained problem will be presented in the simulation section.

Since P1 is equivalent to P2 with proper setting of the weights ρk`, we shall now derive a distributed algorithm for solving

problem P2. In this paper, we shall consider normalized weights that satisfy

N∑
`=1

ρk` = 1, and ρk` = 0 if ` /∈ Nk\C(k). (14)

B. Local cost decomposition and problem relaxation

The solution method (12) using (13) requires that every node in the network should have access to the statistical moments

Rx,k and pxd,k over its cluster. There are two problems with this scenario. First, nodes can only be assumed to have access

to information from their immediate neighborhood and the cluster of every node k may include nodes that are not direct

neighbors of k. Second, nodes rarely have access to the moments {Rx,d,pxd,k}; instead, they have access to data generated

from distributions with these moments. Therefore, more is needed to enable a distributed solution that relies solely on local

interactions within neighborhoods and that relies on measured data as opposed to statistical moments. To derive a distributed

algorithm, we follow the approach of [2], [16]. The first step in this approach is to show how to express the cost (9) in terms

of other local costs that only depend on data from neighborhoods.

1Let g(w, ζ) = [ζi∇wCi
JCi(wCi ,w−Ci)]

Q
i=1 arranged as a row vector with ζi > 0. The cost functions {JCi(wCi ,w−Ci)}

Q
i=1 satisfy the

diagonal strict convexity property if g(w, ζ) is strictly decreasing in w for some positive vector ζ, that is, (g(ŵ, ζ)−g(w, ζ))>(ŵ−w) < 0

for all nonequal w, ŵ.
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Thus, let us introduce an N ×N right stochastic matrix C with nonnegative entries c`k such that

N∑
k=1

c`k = 1, and c`k = 0 if k /∈ N` ∩ C(`). (15)

With these coefficients, we associate a local cost function of the following form with each node k [2]:

J loc
k (wC(k)) =

∑
`∈Nk∩C(k)

c`k E
{∣∣d`(n)− x>` (n)wC(k)

∣∣2} . (16)

One important distinction from the local cost defined in [2] is that in [2] the summation in (16) is defined over the entire

neighborhood of node k, i.e., for all ` ∈ Nk. Here we are excluding those neighbors of k that do not belong to its cluster. This

is because these particular neighbors will be pursuing a different parameter vector than node k. Furthermore, we note in (16)

that wC(k) = wC(`) because ` ∈ C(k). To make the notation simpler, we shall write wk instead of wC(k). A consequence of

this notation is that wk = w` for all ` ∈ C(k). Incorporating the estimates of the neighboring clusters, we modify (16) to

associate a regularized local cost function with node k of the following form

J loc
k (wk) =

∑
`∈Nk∩C(k)

c`k E
{∣∣d`(n)− x>` (n)wk

∣∣2}+ η
∑

`∈Nk\C(k)

ρk`‖wk −w`‖2. (17)

Observe that this local cost is now solely defined in terms of information that is available to node k from its neighbors. Using

this regularized local cost function, it can be verified that the global cost function for cluster Ci in (9) can be now expressed

as

JCi(wCi ,w−Ci) =
∑
k∈Ci

( ∑
`∈C(k)

c`kE
{∣∣d`(n)− x>` (n)wC(k)

∣∣2}+ η
∑

`∈Nk\Ci
ρk` ‖wC(k) −wC(`)‖2

)
=
∑
k∈Ci

J loc
k (wk)

= J loc
k (wk) +

∑
`∈C(k)\k

J loc
` (w`) (18)

Let wo
k denote the minimizer of the local cost function (17), given w` for all ` ∈ Nk\C(k). A completion-of-squares argument

shows that each J loc
k (wk) can be expressed as

J loc
k (wk) = J loc

k (wo
k) + ‖wk −wo

k‖2Rk (19)

where

Rk =
∑

`∈Nk∩C(k)

c`kRx,` + η
∑

`∈Nk\C(k)

ρk`IL. (20)

Substituting equation (19) into the second term on the right-hand-side of (18), and discarding the terms {J loc
` (wo

`)}because

they are independent of the optimization variables in the cluster, we can consider the following equivalent cost function for

cluster C(k) at node k:

JC(k)(wk) , J loc
k (wk) +

∑
`∈C(k)\k

‖w` −wo
`‖2R` (21)

where it holds that wk = w` because ` ∈ C(k). Note that we have omitted w−k in the notation for JC(k)(wk) for the sake

of brevity. Therefore, minimizing (21) is equivalent to minimizing the original cost (18) or (9) over wk. However the second

term (21) still requires information from nodes ` that may not be in the direct neighborhood of node k even though they

belong to the same cluster. In order to avoid access to information via multi-hop, we can relax the cost function (21) at node
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k by considering only information originating from its neighbors. This can be achieved by replacing the range of the index

over which the summation in (21) is computed as follows:

JC(k)
′
(wk) = J loc

k (wk) +
∑

`∈N−k ∩C(k)

‖wk −wo
`‖2R` . (22)

Usually, especially in the context of adaptive learning in a non-stationary environment, the weighting matricesR` are unavailable

since the covariance matrices Rx,` at each node may not be known beforehand. Following an argument based on the Rayleigh-

Ritz characterization of eigenvalues, it was explained in [2] that a useful strategy is to replace each matrix R` by a weighted

multiple of the identity matrix, say, as:

‖wk −wo
`‖2R` ≈ b`k ‖wk −wo

`‖2 (23)

for some nonnegative coefficients b`k that can possibly depend on the node k. As shown later, these coefficients will be

incorporated into a left stochastic matrix to be defined and, therefore, the designer does not need to worry about the selection

of the b`k at this stage. Based on the arguments presented so far, and using (17), the global cost function (22) can then be

relaxed to the following form:

JC(k)
′′
(wk) =

∑
`∈Nk∩C(k)

c`k E
{∣∣d`(n)− x>` (n)wk

∣∣2}
+ η

∑
`∈Nk\C(k)

ρk` ‖wk −w`‖2 +
∑

`∈N−k ∩C(k)

b`k‖wk −wo
`‖2.

(24)

Observe that the two last sums on the right-hand-side of (24) divide the neighbors of node k into two exclusive sets: those

that belong to its cluster (last sum) and those that do not belong to its cluster (second term). In summary, the argument so far

enabled us to replace the cost (9) by the alternative cost (24) that depends only on data within the neighborhood of node k. We

can now proceed to use (24) to derive distributed strategies. Subsequently, we study the stability and mean-square performance

of the resulting strategies and show that they are able to perform well despite the approximation introduced in steps.

IV. STOCHASTIC APPROXIMATION ALGORITHMS

To begin with, a steepest-descent iteration can be applied by each node k to minimize the cost function (24). Let wk(n)

denote the estimate for wk at iteration n. Using a constant step-size µ for each node, the update relation would take the

following form:

wk(n+ 1) = wk(n)− µ
∑

`∈Nk∩C(k)

c`k
(
Rx,`wk(n)− pxd,k

)
− µη

∑
`∈Nk\C(k)

ρk` (wk(n)−w`(n))

− µ
∑

`∈N−k ∩C(k)

b`k (wk(n)−wo
`)

(25)

Among other possible forms, expression (25) can be evaluated in two successive update steps

ψk(n+ 1) = wk(n)− µ

 ∑
`∈Nk∩C(k)

c`k
(
Rx,`wk(n)− pxd,k

)
+ η

∑
`∈Nk\C(k)

ρk` (wk(n)−w`(n))

 (26)

wk(n+ 1) = ψk(n+ 1) + µ
∑

`∈N−k ∩C(k)

b`k (wo
` −wk(n)) (27)

Following the same line of reasoning from [2] in the single-task case, and extending the argument to apply to clusters, we use

ψ`(n + 1) as a local estimate for wo
` in (27) since the latter is unavailable and ψ`(n + 1) is an intermediate estimate for it
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that is available at node ` at time n+ 1. In addition, again in step (27), we replace wk(n) by ψk(n+ 1) since it is a better

estimate obtained by incorporating information from the neighbors according to (26). Step (27) then becomes

wk(n+ 1) =

1− µ
∑

`∈N−k ∩C(k)

b`k

ψk(n+ 1) + µ
∑

`∈N−k ∩C(k)

b`k ψ`(n+ 1). (28)

The coefficients in (28) can be redefined as:

akk , 1− µ
∑

`∈N−k ∩C(k)

b`k

a`k , µ b`k, ` ∈ N−k ∩ C(k)

a`k , 0, ` /∈ Nk ∩ C(k)

(29)

It can be observed that the entries {a`k} are nonnegative for all ` and k (including akk) for sufficiently small step-size.

Moreover, the matrix A with (`, k)-th entry a`k is a left-stochastic matrix, which means that the sum of each of its columns is

equal to one. With this notation, we obtain the following adapt-then-combine (ATC) diffusion strategy for solving problem (9)

in a distributed manner:

ψk(n+ 1) = wk(n)− µ

 ∑
`∈Nk∩C(k)

c`k
(
Rx,`wk(n)− pxd,k

)
+ η

∑
`∈Nk\C(k)

ρk` (wk(n)−w`(n))


wk(n+ 1) =

∑
`∈Nk∩C(k)

a`k ψk(n+ 1)

(30)

At each instant n + 1, node k updates the intermediate value ψk(n + 1) with a local steepest descent iteration. This step

involves a regularization term in the case where the set of inter-cluster neighbors of node k is not empty. Next, an aggregation

step is performed where node k combines its intermediate value ψk(n+ 1) with the intermediate values ψ`(n+ 1) from its

cluster neighbors. It is also possible to arrive at a combine-then-adapt (CTA) diffusion strategy where the aggregation step is

performed prior to the adaptation step [2]. In what follows, it is sufficient to focus on the ATC strategy to illustrate the main

results. Employing instantaneous approximations for the required signal moments in (30), we arrive at the desired diffusion

strategy for clustered multitask learning described in Algorithm 1 where the regularization factors ρk` are chosen according

to (14), and the coefficients {c`k, a`k} are nonnegative scalars chosen at will by the designer to satisfy the following conditions:

a`k ≥ 0,
∑

`∈Nk∩C(k)

a`k = 1, a`k = 0 for ` /∈ Nk ∩ C(k) (31)

c`k ≥ 0,
∑

k∈N`∩C(`)
c`k = 1, c`k = 0 for k /∈ N` ∩ C(`) (32)

There are several ways to select these coefficients such as using the averaging rule or the Metropolis rule (see [2] for a listing

of these and other choices).

In the case of a single-task network when there is a single cluster that consists of the entire set of nodes we get Nk∩ C(k) =

Nk and Nk\C(k) = ∅ for all k, so that expression (33) reduces to the diffusion adaptation strategy [2], [16] described in

Algorithm 2.

In the case of a multitask network where the size of each cluster is one, we have Nk ∩ C(k) = {k} and Nk\C(k) = N−k
for all k, the algorithm and (34) degenerate into Algorithm 3. Interestingly, this is the instantaneous gradient counterpart of

equation (12) for each node.
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Algorithm 1: Diffusion LMS for clustered multitask networks
Start with wk(0) = 0 for all k, and repeat:

ψk(n+ 1) = wk(n) + µ

 ∑
`∈Nk∩C(k)

c`k

(
d`(n)− x>

` (n)wk(n)
)
x`(n) + η

∑
`∈Nk\C(k)

ρk` (w`(n)−wk(n))


wk(n+ 1) =

∑
`∈Nk∩C(k)

a`k ψk(n+ 1)

(33)

Algorithm 2: Diffusion LMS for single-task networks [15], [16].
Start with wk(0) = 0 for all k, and repeat:

ψk(n+ 1) = wk(n) + µ
∑
`∈Nk

c`k

(
d`(n)− x>

` (n)wk(n)
)
x`(n)

wk(n+ 1) =
∑
`∈Nk

a`k ψk(n+ 1)
(34)

Algorithm 3: Diffusion LMS for multitask networks
Start with wk(0) = 0 for all k, and repeat:

wk(n+ 1) = wk(n) + µ
(
dk(n)− x>

k (n)wk(n)
)
xk(n) + η µ

∑
`∈N−k

ρk` (w`(n)−wk(n)) (35)

V. MEAN-SQUARE ERROR PERFORMANCE ANALYSIS

We now examine the stochastic behavior of the adaptive diffusion strategy (33). In order to address this question, we collect

information from across the network into block vectors and matrices. In particular, let us denote by w(n), w? and ψ the block

weight estimate vector, the block optimum weight vector and block intermediate weight estimate vector, all of size LN × 1,

i.e.,

w(n) =


w1(n)

...

wN (n)

 , w? =


w?

1

...

w?
N

 , ψ(n) =


ψ1(n)

...

ψN (n)

 (36)

with w?
k = w?

C(k). The weight error vector for each node k at iteration n is defined by vk(n) = wk(n) − w?
k. The weight

error vectors vk(n) are also stacked on top of each other to get the block weight error vector defined as follows:

v(n) =


v1(n)

...

vN (n)

 (37)

To perform the theoretical analysis, we introduce the following independence assumption.

Assumption 1: (Independent regressors) The regression vectors xk(n) arise from a stationary random process that is

temporally stationary, white and independent over space with Rx,k = E{xk(n)x>k (n)} > 0.
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A direct consequence is that xk(n) is independent of v`(m) for all ` and m ≤ n. Although not true in general, this assumption

is commonly used for analyzing adaptive constructions because it allows to simplify the derivations without constraining the

conclusions. Moreover, various analyses in the literature have already shown that performance results obtained under this

assumption match well the actual performance of adaptive algorithms when the step-size is sufficiently small [55].

A. Mean error behavior analysis

The estimation error that appears in the first equation of (33) can be rewritten as

d`(n)− x>` (n)wk(n) = x>` (n)w?
k + z`(n)− x>` (n)wk(n)

= z`(n)− x>` (n)vk(n)
(38)

because w?
` = w?

k for all ` ∈ Nk ∩ C(k). Subtracting w?
k from both sides of the first equation in (33), and using the above

relation, the update equation for the block weight error vector of ψk(n+ 1) can be expressed as

ψ(n+ 1)−w? = v(n)− µHx(n)v(n) + µpzx(n)− µ ηQ (v(n) +w?) (39)

where

Q = ILN − P ⊗ IL, (40)

with ⊗ denoting the Kronecker product, and P the N × N matrix with (k, `)-th entry ρk`. Moreover, the matrix Hx(n) is

block diagonal of size LN × LN defined as

Hx(n) = diag
{ ∑
`∈N1∩C(1)

c`1 x`(n)x>` (n), . . . ,
∑

`∈NN∩C(N)

c`N x`(n)x>` (n)
}
, (41)

and pzx(n) is the following vector of length LN × 1:

pzx(n) =
( ∑
`∈N1∩C(1)

c`1 x
>
` (n)z`(n), . . . ,

∑
`∈NN∩C(N)

c`N x
>
` (n)z`(n)

)>
. (42)

Let AI = A⊗ IL. The second equation in (33) then allows us to write

w(n+ 1) = A>I ψ(n+ 1) (43)

Subtracting w? from both sides of the above expression, and using equation (39), the update relation can be written in a single

expression as follows

v(n+ 1) = A>I [ILN − µ (Hx(n) + ηQ)] v(n) + µA>I pzx(n)− µ ηA>I Qw? (44)

Taking the expectation of both sides, and using Assumption 1 we get

E{v(n+ 1)} = A>I [ILN − µ (HR + ηQ)] E{v(n)} − µ ηA>I Qw? (45)

where

HR , E{Hx(n)} = diag {R1, . . . ,RN} (46)

with

Rk =
∑

`∈Nk∩C(k)

c`kRx,`. (47)
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Theorem 1: (Stability in the mean) Assume data model (1) and Assumption 1 hold. Then, for any initial condition, the

diffusion multitask strategy (33) asymptotically converges in the mean if the step-size is chosen to satisfy

ρ
(
A>I [ILN − µ (HR + ηQ)]

)
< 1 (48)

where ρ(·) denotes the spectral radius of its matrix argument. A sufficient condition for (48) to hold is to choose µ such that

0 < µ <
2

maxk{λmax(Rk)}+ 2 η
(49)

where λmax(·) denotes the maximum eigenvalue of its matrix argument. In that case, it follows from (45) that the asymptotic

mean bias is given by

lim
n→∞

E{v(n)} = µ η
{
A>I [ILN − µ (HR + ηQ)]− ILN

}−1

A>I Qw
?. (50)

Proof: Since any induced matrix norm is lower bounded by the spectral radius, we have the following relation in terms

of the block maximum norm (see [2] for definition and properties of the norm):

ρ
(
A>I [ILN − µ (HR + ηQ)]

)
≤ ‖A>I (ILN − µ (HR + ηQ)) ‖b,∞ (51)

Now using norm inequalities and the fact that A is a left-stochastic matrix (whose block maximum norm is equal to one), we

find that:

‖A>I [ILN − µ (HR + ηQ)] ‖b,∞ ≤ ‖A>I ‖b,∞ · ‖ILN − µ (HR + ηQ)‖b,∞

= ‖ILN − µ (HR + ηQ)‖b,∞

≤ ‖ILN − µHR − µηILN‖b,∞ + µη ‖P ⊗ IL‖b,∞

(52)

using the definition Q = (IN − P )⊗ IL and the triangle inequality. Now, it holds that

‖P ⊗ IL‖b,∞ = ‖P ‖∞ = 1 (53)

because P is a right stochastic matrix according to condition (14). Furthermore, since (1−µη) ILN−µHR is a block diagonal

Hermitian matrix, its block maximum norm is equal to its spectral radius [2], namely,

‖(1− µη) ILN − µHR‖b,∞ = ρ ((1− µη) ILN − µHR) . (54)

Using (53)–(54) in (52) we conclude that a sufficient condition for mean stability is to require

ρ ((1− µη) ILN − µHR) + µη ≤ 1, (55)

which yields condition (49).

B. Mean-square error behavior analysis

In order to make the presentation clearer, we shall use the following notation for terms in the weight-error expression (44):

B(n) = A>I [ILN − µ (Hx(n) + ηQ)]

g(n) = A>I pzx(n)

r = A>I Qw
?

(56)
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so that

v(n+ 1) = B(n)v(n) + µ g(n)− µ η r. (57)

Using Assumption 1 and E{g(n)} = 0, the mean-square of the weight error vector v(n + 1), weighted by any positive

semi-definite matrix Σ that we are free to choose, satisfies the following relation:

E{‖v(n+ 1)‖2Σ} = E{‖v(n)‖2Σ′}+ µ2 trace
{
ΣE{g(n)g>(n)}

}
+ µ2η2 ‖r‖2Σ

− 2µ η r>ΣBE{v(n)}
(58)

where

B , {B(n)} = A>I [(ILN − µ (HR + ηQ)] (59)

Σ′ , E{B>(n) ΣB(n)} (60)

In expression (58), the freedom in selecting Σ will allow us to derive several performance metrics. Let

G = E{g(n)g>(n)}

= A>I C
>
I diag{σ2

z,1Rx,1, . . . , σ
2
z,NRx,N}CI AI

(61)

where CI = C ⊗ IL. Then, relation (58) can be rewritten as

E{‖v(n+ 1)‖2Σ} = E{‖v(n)‖2Σ′}+ µ2 trace {ΣG}+ µ2η2 ‖r‖2Σ − 2µ η r>ΣBE{v(n)} (62)

We would like to show that this variance relation converges for sufficiently small step-sizes and we would also like to evaluate

its steady-state value in order to determine the mean-square-error of the distributed strategy. However, note that the weighting

matrices Σ and Σ′ on both sides of (62) are different, which means that (62) is still not an actual recursion. To handle this

situation, we transform the weighting matrices into vector forms as follows. Let vec(·) denote the operator that stacks the

columns of a matrix on top of each other. Vectorizing the matrices Σ and Σ′ by σ = vec(Σ) and σ′ = vec(Σ′), it can be

verified that the relation between them can be expressed as the following linear transformation:

σ′ = Kσ (63)

where K is the (LN)2 × (LN)2 matrix given by

K = E{B>(n)⊗B>(n)}

= AI ⊗AI − µ (HR + ηQ)>AI ⊗AI − µAI ⊗ (HR + ηQ)>AI

+ µ2E{(H(n) + ηQ)>AI ⊗ (H(n) + ηQ)>AI}.

(64)

Neglecting the influence of second-order terms in µ, K can be approximated by

K ≈ B> ⊗B>. (65)

Finally, let us define f(σ, E{v(n)}) as the last two terms on the right hand side of (62), i.e.,

f(σ, E{v(n)}) , µ2η2 ‖r‖2σ − 2µ η (BE{v(n)} ⊗ r)
>
σ. (66)

For notational convenience, we are omitting the argument r of f since it is deterministic. Equation (62) can be expressed as

follows:

E{‖v(n+ 1)‖2σ} = E{‖v(n)‖2Kσ}+ µ2 vec(G>)> σ + f(σ, E{v(n)}) (67)



14

where we will be using the notations ‖·‖Σ and ‖·‖σ interchangeably.

Theorem 2: (Mean-square stability) Assume data model (1) and Assumption 1 hold. Assume further that the step-size µ

is sufficiently small such that approximation (49) is justified by neglecting higher-order powers of µ, and relation (67) can

be used as a reasonable representation for the evolution of the (weighted) mean-square-error. Then the diffusion multitask

strategy (33) is mean-square stable if the matrix K is stable. Under approximation (65), the stability of K is guaranteed by

sufficiently small step-sizes that also satisfy (49).

Proof: Iterating recursion (67) starting from n = 0, we find that

E{‖v(n+ 1)‖2σ} = E{‖v(0)‖2Kn+1σ}+ µ2 vec(G>)>
n∑
i=0

Kiσ +

n∑
i=0

f(Kiσ, E{v(n− i)}) (68)

with initial condition v(0) = w(0)−w?. Provided that K is stable, the first and the second term on the RHS of (68) converge

as n → ∞, to zero for the former, and to a finite value for the latter. Consider now the third term on the RHS of (68). We

know from (45) that E{v(n)} is uniformly bounded because (45) is a BIBO stable recursion with a bounded driving term

−µ ηA>I Qw?. Moreover, from (66), the expression for f(Kiσ, E{v(n− i)}) can be written as

f(Kiσ, E{v(n− i)}) = µ2η2 vec{rr>}>Kiσ − 2µ η (BE{v(n− i)} ⊗ r)
>
Kiσ. (69)

We further know that K is stable. Therefore, there exists a matrix norm [2], denoted by ‖·‖ρ such that ‖K‖ρ = cρ < 1.

Applying this norm to f and using the triangular inequality, we can deduce that

|f(Kiσ, E{v(n− i)})| < ν ciρ (70)

for some positive finite constant ν. It follows that the sum appearing as the right-most term in (68) converges as n→∞. We

conclude that E{‖v(n+ 1)‖2σ} converges to a bounded value as n→∞, and the algorithm is said to be mean-square stable.

Theorem 3: (Transient MSD) Considering a sufficiently small step-size µ that ensures mean and mean-square stability, and

selecting Σ = 1
N ILN , then the network MSD learning curve, defined by ζ(n) = 1

NE{‖v(n)‖}2 evolves according to the

following recursions for n ≥ 0:

ζ(n+ 1) = ζ(n) +
1

N

(
µ2 vec(G>)>Knvec(ILN )− E{‖v(0)‖2(I(NL)2−K)Knvec(ILN )}+ µ2η2‖r‖2Knvec(ILN )

− 2µη (Γ(n) + (BE{v(n)} ⊗ r)
> vec(ILN )

) (71)

Γ(n+ 1) = Γ(n)K + (BE{v(n)} ⊗ r)
>

(K − I(LN)2) (72)

with initial condition ζ(0) = 1
N ‖v(0)‖2 and Γ(0) = 0(LN)2 .

Proof: Comparing (68) at instants n+ 1 and n, we can relate E{‖v(n+ 1)‖2σ} to E{‖v(n)‖2σ} as follows:

E{‖v(n+ 1)‖2σ} =E{‖v(n)‖2σ}+ µ2 vec(G>)>Knσ − E{‖v(0)‖2(I(NL)2−K)Knσ}

+

n∑
i=0

f(Kiσ, E{v(n− i)})−
n−1∑
i=0

f(Kiσ, E{v(n− 1− i)})
(73)
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We can rewrite the last two terms on the RHS of (73) as follows:
n∑
i=0

f(Kiσ, E{v(n− i)})−
n−1∑
i=0

f(Kiσ, E{v(n− 1− i)})

= µ2η2 ‖r‖2Knσ −
n∑
i=0

{
2µ η (BE{v(n)} ⊗ r)

>
Kiσ

}
+

n−1∑
i=0

{
2µ η (BE{v(n)} ⊗ r)

>
Kiσ

}
= µ2η2 ‖r‖2Knσ − 2µ η (BE{v(n)} ⊗ r)

>
σ

− 2µ η
{ n∑
i=1

(BE{v(n)} ⊗ r)
>
Ki +

n−1∑
i=0

(BE{v(n)} ⊗ r)
>
Ki
}
σ.

(74)

Introducing the following notation

Γ(n) =

n∑
i=1

(BE{v(n)} ⊗ r)
>
Ki +

n−1∑
i=0

(BE{v(n)} ⊗ r)
>
Ki, (75)

we can reformulate recursion (73) as follows:

E{‖v(n+ 1)‖2σ} = E{‖v(n)‖2σ}+ µ2 vec(G>)>Knσ − E{‖v(0)‖2(I(NL)2−K)Knσ}+ µ2η2‖r‖2Knσ

− 2µη (Γ(n) + (BE{v(n)} ⊗ r)
>
σ

(76)

Γ(n+ 1) = Γ(n)K + (BE{v(n)} ⊗ r)
>

(K − I(LN)2) (77)

with Γ(0) = 0(LN)2 . To derive the transient curve for the MSD, we replace σ by 1
N vec(ILN ).

Theorem 4: (Steady-state MSD) If the step size is chosen sufficiently small to ensure mean and mean-square-error conver-

gence, then the value of the steady-state MSD for the diffusion network (33) is given by

ζ? =
µ2

N
vec(G>)> (I(LN)2 −K)−1vec(ILN ) + f

(
1

N
(I(LN)2 −K)−1vec(ILN ), E{v(∞)}

)
(78)

where E{v(∞)} is determined by expression (50).

Proof: The steady-state MSD is the limiting value

ζ? = lim
n→∞

1

N
E{‖v(n)‖}2. (79)

From the recursive expression (67) we obtain as n→∞ that

lim
n→∞

E{‖v(n)‖2(I(NL)2−K)σ} = µ2 vec(G>)> σ + f(σ, E{v(∞)}). (80)

Comparing expressions (79) and (80), we observe that to arrive at the MSD requires us to choose σ to satisfy

(I(NL)2 −K)σMSD =
1

N
vec(ILN ). (81)

This leads to expression (78).

VI. SIMULATION EXAMPLES

In this section, we first conduct simulations on a simple network to illustrate the proposed algorithm and the analytical

performance models. Then, we provide several application-oriented examples where the proposed distributed learning strategy

may find applications. These experiments will illustrate the behavior and the advantage of the proposed strategy.
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Fig. 2. Experimental setup. Left: network studied in Section VI-A, with 10 nodes divided into 4 different clusters. Right: input signal and

noise variances for each node.

A. Illustrative numerical example

In this subsection we provide an illustrative example to show how the proposed distributed algorithm converges over clustered

multitask network. We consider a network consisting of 10 nodes with the topology depicted in Figure 2 (left). The nodes

were divided into 4 clusters: C1 = {1, 2, 3}, C2 = {4, 5, 6}, C3 = {7, 8} and C4 = {9, 10}. Two-dimensional coefficient vectors

of the form w?
Ci = wo + δwCi were chosen as wo = [0.5,−0.4]>, δwC1 = [0.0287,−0.005]>, δwC2 = [0.0234, 0.005]>,

δwC3 = [−0.0335, 0.0029]>, and δwC4 = [0.0224, 0.00347]>. The regression inputs xk(n) were zero-mean 2 × 1 random

vectors governed by a Gaussian distribution with covariance matrices Rx,k = σ2
x,k IL, and the σ2

x,k shown in the top right plot

of Figure 2. The background noises zk(n) were i.i.d. zero-mean Gaussian random variables, independent of any other signals.

The corresponding variances σ2
z,k are depicted in the bottom right plot of Figure 2.

Regularization strength ρk` was chosen as ρk` = |Nk\C(k)|−1 for ` ∈ Nk\C(k), and ρk` = 0 for any other `. This

setting usually leads to asymmetrical regularization weights. We considered the diffusion algorithm with measurement diffusion

governed by a uniform matrix C such that c`k = |N` ∩C(`)|−1 for k ∈ N` ∩C(`). Likewise, a uniform A was used such that

a`k = |Nk ∩ C(k)|−1 for ` ∈ Nk ∩ C(k).

The algorithm was run with different step-size and regularization parameters (µ, η) such as (0.01, 0.1), (0.05, 0.1) and

(0.01, 1). Simulation results were obtained by averaging 100 Monte-Carlo runs. Transient MSD curves were obtained by (71)

and (72). Steady-state MSD values were obtained by expression (78). It can be observed in the left plot of Figure 3 that the

models accurately match the simulated results.

These models were used to illustrate the performance of several learning strategies: 1) the non-cooperative LMS algorithm,

2) the multitask algorithm and 3) the clustered multitask algorithm. The non-cooperative algorithm was obtained by assigning

a cluster to each node and setting η = 0. The multitask algorithm was obtained by assigning a cluster to each node and setting

η 6= 0. The right plot of Figure 3 shows that the noncooperative algorithm has the largest MSD as nodes do not collaborate

for additional benefit. If estimation is performed without cluster information, but only with regularization between nodes as in

the case of the multitask diffusion LMS, it can be observed that the performance is better than in the non-cooperative case.

Finally, providing prior information to the clustered multitask network via an appropriate definition of clusters leads to the
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best performance. Clustering strategies are not discussed in this paper. This will be investigated in future work. One strategy

is proposed in [42].
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Fig. 3. Network performance illustration. Left: transient and steady-state MSD (model vs. Monte Carlo) for different step-sizes and

regularization parameters. Right: performance comparison for different strategies using theoretical models.

B. Distributed spectrum estimation with multi-antenna devices

We now consider an example of distributed spectral sensing using the clustered multitask diffusion LMS. Cognitive radio

systems involve two types of users: primary users (PU) and secondary users (SU). Secondary users are allowed to detect

and temporarily occupy unused frequency bands provided that they do not cause harmful interference to primary users [56].

Therefore, secondary users need to sense spectral bands that are occupied by active primary users. In [2], [57], collaborative

spectral sensing was studied with single-antenna nodes via the diffusion strategy. In this subsection, we explore a distributed

spectral sensing method over the network with multi-antenna devices.

Consider a communication environment consisting of NP primary users and NS secondary users, each secondary user being

equipped with NR antennas. We assume that the power spectrum of the signal transmitted by each primary user q can be

represented as a linear combination of NB basis functions weighted by the weights αqm, namely,

Sq(f) =

NB∑
m=1

αqm φm(f) (82)

The power spectrum of the signal received at the `-th antenna of device k is given by

Rk`(f) =

NP∑
q=1

pk`,q

(
NB∑
m=1

αqm φm(f)

)
+ σ2

k` (83)

where pk`,q is the path loss factor between the primary user q and the `-th antenna of node k, and σ2
k` is the receiver noise

power.

At each time instant, the `-th antenna of device k gets measurements of the power spectrum Rk`(f) over NF frequency

samples. Assume that the receiver noise power can be estimated with high accuracy using energy detection over an idle band.

Then, at instant n, we can define the reference signal on this antenna element at the j-th frequency band by

rk`,j(n) =

NP∑
q=1

pk`,q

(
NB∑
m=1

αqm φm(fj)

)
+ zk`,j(n) for j = 1, . . . , NF (84)
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where zk`,j(n) is the sampling noise, assumed to be zero-mean Gaussian with variance σ2
zk`,j

. We denote by Φ the NF ×NB
matrix of basis functions with j-th row defined by [φ1(fj), . . . , φNB (fj)], and let

Φk` = [pk`,1, . . . , pk`,NP ]⊗Φ. (85)

We collect coefficients αqm into the vectors αq = [αq1, . . . , αqNB ]> and α = [α>1 , . . . ,α
>
NP

]>, measurements rk`,j(n) into the

vector rk`(n) = [rk`,1(n), . . . , rk`,NF (n)]>, and noise samples zk`,j(n) into the vector zk`(n) = [zk`,1(n), . . . , zk`,NF (n)]>.

At time instant n, the model (84) can then be expressed in the following vector form

rk`(n) = Φk`α+ zk`(n) (86)

for each antenna ` of each sensor node k, at each time instant n. Inverting the linear model (86) should allow each pair (k, `)

to estimate the solution α(n). However, in practice, the path loss factor pk`,q cannot be estimated accurately, or even estimated

due to failures of synchronization if the power of the received signal is lower than a certain threshold. Thus, Φ̂k`, depending

on the estimated path loss factors p̂k`,q , should be used instead of Φk` in the model (86). In the experiment described hereafter,

we treat each multi-antenna device as a cluster of NR antennas because they are supposed to sense the same local spectrum. In

addition, we assume that each cluster is fully connected, i.e., with links between each pair of antennas. Existence of connections

between devices depends on their distance from one another. As a consequence, the number of intra-cluster neighbors for each

antenna element is NR, including itself, and the number of extra-cluster neighbors for each antenna element is NR times the

number of neighboring devices.

Estimating the spectrum in a noncooperative manner would lead to a local profile of the spectrum occupation, with hidden

node effects. We used our algorithm to circumvent this drawback. We considered a connected network composed of NP = 2

primary users and NS = 10 secondary users. Each secondary user was equipped with an antenna array of NR elements. The

topology of the network is shown in Figure 4. The secondary users sampled NF = 80 frequency bins. We used NB = 16

Gaussian basis functions defined as

φm(f) = e
− ‖f−fci‖

2

2σ2
b (87)

with centers fci uniformly distributed along the frequency axis, and variance σ2
b = 0.0025. Vectors α1 and α2 were arbitrarily

set to α1 = [0>10 0.4 0.38 0.4 0>3 ]> and α2 = [0>3 0.4 0.38 0.4 0>10]>, where 0q is a q×1 vector of zeros. The path loss factor

at instant n between the primary user q and the `-th antenna of the secondary user k was set to pk`,q(n) = p̄k,q + δpk`,q(n),

where p̄k,q is the deterministic path loss factor determined by the distance between k and q via the free space propagation

model, i.e., the received signal power is inversely proportional to the squared distance to the transmitter, and δpk`,q(n) is a

zero-mean Gaussian variable with standard deviation 0.2 p̄k,q , which served as the random fading among antenna elements.

In practice, the path loss factors have to be estimated. We considered that each antenna of the secondary user k was able to

estimate p̂k`,q(n) = p̄k,q if p̄k,q ≥ p0, otherwise p̂k`,q(n) = 0 due to the loss of the synchronization. The noise zk`,j(n) was

assumed to be zero-mean Gaussian with the standard deviation 0.01. The antenna elements were considered as fully connected

on each device. The information exchange matrix C and the combination matrix A were arbitrarily set to uniform matrices,

with entries thus equal to 1
NR

as each multi-antenna device was considered as a cluster. Within each cluster, the regularization

parameter ρk` was uniformly set to one over NR multiplied by the number of neighboring devices.

Our algorithm was run on the multi-antenna device network with different settings. In the left plot of Figure 5, a diffusion

strategy was applied within each device, without cooperation between devices (η = 0), for several numbers NR of antennas per

device. In the right plot of Figure 5, a diffusion strategy was applied within each device, and cooperation between devices was
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Fig. 4. Cognitive radio network with multi-antenna devices.

promoted (η = 0.01). The step-sizes were adjusted so that the initial convergence rates were equivalent. It can be observed that

increasing the number of antennas, and promoting cooperation between the sets of antennas, allow to improve the performance

notably. Figure 6 provides the estimated power spectra for 4 of the 10 devices. Three learning strategies are considered: a non-

cooperative strategy (η = 0) with single-antenna devices (NR = 1), and a cooperative strategy (η = 0.01) with single-antenna

devices (NR = 1) and multi-antenna devices (NR = 4).

Red dashed curves represent ground-truth spectra transmitted by the primary users. An inspection of the device locations

in Figure 4 shows that the non-cooperative strategy is highly influenced by the local profile of power spectra. For instance,

device 8 was close to PU1 and far from PU2, and it poorly estimated the power spectra generated by PU2. Device 10 was not

able to estimate any spectrum because it was out of range for PU1 and PU2. Channel allocation relying on such local spectral

profile may have led to a hidden node effect. Cooperative strategies clearly provide more consistent results, and using multiple

antennas provides additional gain.

C. Distributed non-point target localization

The second application addresses the problem of target localization. Existing localization methods based on the diffusion

strategy assume point targets [2], [3]. However, in some situations, targets may not be reduced to a single point such as its

centroid. For instance, this includes the case where the target is a region of interest scanned by a laser light sheet. The algorithm

should be able to jointly estimate a series of coordinates that characterizes the target area.

The problem we considered is shown in Figure 7. The target was the arc of a circle with center wo. The angular resolution

of the nodes was denoted by δ. This means that arcs of the circle with solid angle δ were viewed as a single point wq by

the cluster Cq of nodes within the cone of axis (wo,wq). Note that the distance between each node k ∈ Cq and wq can be

expressed in the inner product form

rkq = u>kq (wq − pk) (88)
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Fig. 5. MSD learning curves. Left: non-cooperating devices (η = 0). Right: cooperating devices (η = 0.01).
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Fig. 6. PSD estimation. From top to bottom: estimate on nodes 3, 6, 8, and 10. From left to right: non-cooperative single-antenna system

(NR = 1, η = 0), cooperative single-antenna system (NR = 1, η = 0.01), cooperative multi-antenna system (NR = 4, η = 0.01).

where pk is the location of node k, and ukq is the unit-norm vector pointing from pk to wq . We assumed that sensors were

aware of their location pk. Let dkq = rkq + u>kq pk, that is, dkq = u>kqwq . The problem was thus to estimate w?
q from noisy

input-output data (ukq(n), dkq(n)) collected by nodes k ∈ Cq . The model that was thus considered is given by [2]:

dkq(n) = u>kq(n)w?
q + vkq(n)

with ukq(n) = ukq + αk(n)u⊥kq + βk(n)ukq

(89)

with vkq(n) a zero-mean temporally and spatially i.i.d. Gaussian noise of variance σ2
v . Moreover, the measured direction vector

ukq(n) was assumed to be a noisy realization of the unit-norm vector pointing from pk to w?
q , with αk(n) and βk(n) two

Gaussian random variables of variances σ2
α and σ2

β , respectively.
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The multitask algorithm (33) was used to estimate the coordinates w?
q for q ∈ {1, . . . , Q}, and to approximate the arc of

radius R. Each node was connected to its neighbors within its cluster and the adjacent clusters. We considered two network

topologies. In the first scenario, see the left-hand plot in Figure 8 (first row), 100 nodes ranging from 3R to 4R were grouped

into 10 clusters, with 10 nodes in each. The nodes were deployed uniformly with connections between neighbors. In the second

scenario, see the right-hand plot in Figure 8 (first row), 200 nodes ranging from 3R to 4R were grouped into 10 clusters, with

20 nodes in each cluster. The nodes were deployed randomly. For both experiments, the noise variances were set as follows:

σ2
v = 0.5, σ2

α = 0.1, and σ2
β = 0.01. We used an identity information exchange matrix C = I . The combination matrix A

was defined as a`k = |Nk ∩C(k)|−1 in order to average the estimates of within-cluster neighbors. The regularization strengths

ρk` were set to ρk` = |Nk\C(k)|−1 for ` ∈ Nk\C(k), with k 6= 1 and k 6= Q. Recall that C1 and CQ are boundary clusters,

and the specific regularization strengths ρ1` = ρQ` = 0 for all ` were used to preserve the configuration of the group.

We ran the non-cooperative algorithm, and the clustered multitask algorithm with η = 0.5 and η = 0.0005 for each scenario,

respectively. Figure 8 (second row) shows one realization of the estimated points wq for each arc. The cooperative algorithm

clearly outperformed the non-cooperative algorithm. Figure 8 (third row) compares the MSD of the two strategies mentioned

above, with the clustered multitask algorithm with η = 0. In this case, the diffusion strategy is applied independently in each

cluster, without inter-cluster interactions. This experiment clearly illustrates the advantage of fully cooperative strategies in this

problem.

Cq

Cq+2

Cq+1

Cq�1

Cq�2

w⇤
q�1

w⇤
q

w⇤
q+1

�

w0

Fig. 7. Target surface localization.

D. Distributed unmixing of hyperspectral data

Finally, we consider the problem of distributed unmixing of hyperspectral images using the multitask learning algorithm.

Hyperspectral imaging provides 2-dimensional spatial images over many contiguous bands. The high spectral resolution allows

to identify and quantify distinct materials from remotely observed data. In hyperspectral images, a pixel is usually a spectral
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boundaries in green. Row 2: estimation results, red crosses for the non-cooperative algorithm, black circles for the cooperative algorithm.

Row 3: MSD learning curves.
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mixture of several spectral signatures of pure materials, termed endmembers, due to limited spatial resolution of devices

and diversity of materials [58]. Although nonlinear mixture models have begun to support novel applications [59]–[61], the

linear mixture model is still widely used for determining and quantifying materials in sensed images due to its simpler physical

interpretation. With the linear mixture model, pixels can be decomposed as linear combinations of constituent spectra, weighted

by fractions of abundance.

To facilitate the presentation, we shall consider that the 3-dimensional hyperspectral image under study has been reshaped

into an L × N matrix Y = [y1, . . . ,yN ], with N the number of pixels and L the number of wavelengths. Let M be the

L× R matrix of endmember spectra, with R the number of endmembers, and W = [w1, . . . ,wN ] the R ×N matrix of the

abundance vectors of the pixels in Y . The linear mixture model is expressed by

Y = MW + V (90)

where V = [v1, . . . ,vn] is the modeling error matrix. Suppose that the material signatures (matrix M ) in a scene have been

determined by some endmember extraction algorithm [62]–[64]. The unmixing problem boils down to estimating the abundance

vector associated with each pixel. Besides minimizing the modeling error, it is important to promote similarities of abundance

vectors between neighboring pixels due to their possible correlations. Now we write the unmixing problem as follows:

min
W
‖Y −MW ‖2F + η

N∑
k=1

∑
j∈Nk

ρkj‖wk −wj‖1

subject to wk < 0 and 1>wk = 1 with 1 ≤ k ≤ N,
(91)

where ‖ · ‖2F is the matrix Frobenius norm, Nk is the set of neighbors of pixel k, η is the spatial regularization parameter

and ρkj is the regularization weights. In the above expression, the nonnegativity constraints and sum-to-one constraints are

imposed to ensure physical interpretability of the vectors of fractional abundances.

To conduct linear unmixing of large images in a distributed way, we considered each sensor of the camera as a node,

and we applied the diffusion LMS for multitask problems, that is, one node per cluster – see Figure 9. In order to exploit

the spatial correlations, we defined the regularization function ∆(wk,wj) as the `1-norm of wk −wj to promote piecewise

constant transitions in the fractional abundance of each endmember among neighboring pixels. Similar regularization can be

found in [65], [66]. This led us to the following algorithm:

wk(n+ 1) = P`+1
(
wk(n) + µM>(yk −Mwk(n))− µ η

∑
j∈Nk

ρkj sgn(wk(n)−wj(n))
)

(92)

where we used that the subgradient ∂x‖x‖1 = sgn(x), with sgn(·) the component-wise sign function. In this expression,

P`+1 (·) denotes the iterative operator defined in [67] that projects a vector onto the nonnegative phase of the `1-ball to satisfy

the nonnegativity and sum-to-one constraint in (91). This algorithm clearly contrasts with existing batch approaches based on

FISTA [68] and ADMM [69], which cannot easily address large problems (90).

The algorithm (92) was run on a data cube containing 100 × 100 mixed pixels. Each pixel was generated by the linear

mixture model (91) using 9 endmember signatures randomly selected from the spectral library ASTER [70]. Each signature

of this library has reflectance values measured over 224 spectral bands, uniformly distributed in the interval 3− 12 µm. The

abundance maps of the endmembers are the same as for the image DC2 in [69]. Among these 9 materials, only the 1st, 6th, 8th,

and 9th abundances are considered for pictorial illustration in Figure 11. The first row of this figure depicts the true distribution

of these 5 materials. Spatially homogeneous areas with sharp transitions can be clearly observed. The generated scene was
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Fig. 9. Hyperspectral image unmixing problem with first-order connections between neighboring nodes.

corrupted by a zero-mean white Gaussian noise vn with an SNR level of 20 dB. In this experiment, the regularization weights

ρkj were set equal to the normalized spectral similarity:

ρkj =
θ(yk,yj)∑

`∈N−k
θ(yk,y`)

(93)

where θ(yk,yj) =
y>k yj
‖yk‖‖yj‖ . These weights emphasize the regularization between similar pixels and de-emphasize it for less

similar pixels. When one knows the ground truth map, a commonly used performance measure for evaluating the performance

of an unmixing algorithm is the root mean-square error (RMSE), defined as

RMSE =

√√√√ 1

NR

N∑
n=1

‖wn −w?
n‖2.

The RMSE learning curves using algorithm (92), with spatial regularization (η = 0.05) and without spatial regularization

(η = 0), are depicted in Figure 10. The corresponding abundance distributions are shown in Figure 11. The spatial regularization

results in a lower estimation error, and more homogenous abundance distribution maps with less noise.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we formulated multi-task problems where networks are able to handle situations beyond the case where the

nodes estimate a unique parameter vector over the network. Considering each parameter vector estimation as a task, and

possibly connecting these tasks in order that they can share information, we extended the distributed learning problem from

single-task learning to clustered multitask learning. An algorithm was derived. A mean behavior analysis of the proposed

algorithm was provided, in the case of the least-mean-square error criterion with `2-norm regularization. Several applications

that may benefit from this framework were investigated. Several open problems still have to be solved for specific applications.

For instance, it would be interesting to show which regularization can be advantageously used with our distributed multitask

algorithm, and how they can be efficiently implemented in an adaptive manner. It would also be interesting to investigate how

nodes can autonomously adjust regularization parameters to optimize the learning performance and how they can learn the

structure of the clusters in real-time.
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