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ABSTRACT

This paper investigates the use of Gaussian processes to detect non-
linearly mixed pixels in hyperspectral images. The proposed tech-
nique is independent of nonlinear mixing mechanism, and therefore
is not restricted to any prescribed nonlinear mixing model. The ob-
served reflectances are estimated using both the least squares method
and a Gaussian process. The fitting errors of the two approaches are
combined in a test statistics for which it is possible to estimate a
detection threshold for a required probability of false alarm. The
proposed detector is compared to a robust nonlinearity detector re-
cently proposed using synthetic data and is shown to lead to a better
detection performance. The new detector is also tested on a real hy-
perspectral image.

Index Terms— Nonlinearity detection, Hyperspectral images,
Gaussian processes.

1. INTRODUCTION

The analysis of hyperspectral images has been recognized as an im-
portant tool to infer about the materials present in a scene and about
their relative contribution to the scene [1-3]. Such analysis aims at
unmixing the spectral information present in the hyperspectral image
to identify the composing materials (endmembers) and their abun-
dances in the region from which the data has been acquired. Most
unmixing techniques rely on a parametric mixing model, from which
the parameters must be estimated [4]. The simplest of these models
assumes linear mixing of the endmember contributions [3] (Linear
Mixing Model - LMM). However, it has been recognized that the
mixing in some pixels of a region is actually nonlinear [3—11]. This
finding has triggered a plethora of techniques for analyzing nonlin-
early mixed pixels (see for instance [4, 5] and references therein).
Though nonlinear unmixing permits a better understanding of the
endmember contributions, the corresponding analysis techniques are
necessarily more complex than linear unmixing. Hence, it makes
sense to detect the nonlinearly mixed pixels in an image prior to the
analysis. Doing that allows the utilization of the simplest possible
unmixing technique to analyze each pixel.

A possible approach for detecting nonlinearly mixed pixels as-
sumes a parametric model for the nonlinearity. The parameters con-
trolling the nonlinearity are then estimated and hypothesis tests are
developed based on such estimator. For instance, a single parameter
polynomial post-nonlinear model (PPNMM) is assumed in [12]. The
main question about a parametric modeling of the nonlinear mix-
ing is whether the chosen model is capable of capturing the actual
nonlinear effects present in the hyperspectral image. This is a diffi-
cult question to answer, as the actual nonlinear mixing taking place

in hyperspectral images is usually unknown. When little or noth-
ing is known about the nonlinear mixing mechanism, an interesting
approach is to use nonparametric techniques to obtain information
about the nonlinearity directly from the observed data. Nonparamet-
ric nonlinearity modeling is not new. For instance, [13] proposes a
nonlinear unmixing technique using kernel-based expansions. How-
ever, the work in [13] was not concerned about nonlinearity detec-
tion. Recently, Altmann et al [14] proposed a robust nonlinear mix-
ture detector that does not use a parametric model for the nonlinear
mixture. The detector is based on the fact that linear mixing confines
the noiseless data to a low-dimensional hyperplane. The hypothesis
test thus uses the distance between the observed pixel and that hyper-
plane. The alternative hypothesis is characterized by an extra deter-
ministic contribution to the mean value of the observations. Though
the test proposed in [14] is robust to the actual nonlinear mixing
mechanism, it conveys too little information about the nonlinearity
as a tradeoff to guarantee simplicity.

In this paper we propose a new robust nonlinearity mixing test
that captures more information about the nonlinearity. We propose
to model the contribution of the endmembers to the observations us-
ing a Gaussian Process (GP). The nonlinearity is estimated from the
GP and compared to the linear least squares (LS) LMM estimator
for the same data. A hypothesis test is then proposed based on the
linear and nonlinear estimation errors. As in [14] we assume that the
endmembers are available or have been estimated by an appropriate
endmember extraction algorithm.

2. MIXING MODELS

The LMM [3] is described as
y=Ma+n, (D

where y is the L-dimensional observed pixel, L being the number
of spectral bands, M is the L x R endmember matrix, R is the
number of endmembers, a is the R-dimensional abundance vec-
tor, and m is the additive noise distributed according to a Gaus-
sian distribution with zero mean and covariance matrix J% I, ie.
n ~ N(OL,U?LIL), where Iy, is the L x L identity matrix. The
abundances must also obey the following constraints

R
> ar=1, a >0¥re{l,...,R}. )
r=1

For modeling a general mixing, we represent the observation vector
y as

y=9(M)+n, 3
and model each row of the function g(M ) as a realization of a GP
that describes a distribution over functions.



3. GP REGRESSION

Consider modeling the ith row of (3) as
yi = f(mi) + n, 4)

where m; is the transpose of the ith row of M, n; ~ N (0, Ui) and
f(-) is a smooth latent function. In the context of GPs, we define
a Gaussian prior for f(-) with zero mean' and covariance function
k(m;, m}). Then, y; ~ N(0, k(m;, m}) + o2). Now considering
the training set {y, X }, with inputs X = [m, ..., m], and out-
puts (or observations) y = [y1,...,yz] ", the GP prior distribution
for y can be written as [15]

y ~N(0,K +o2I), (5)

where K is the Gram matrix whose elements K;; = k(m;, m;)
are the kernel functions [16] of the inputs m; and m;, and I is the
L x L identity matrix.

GP regression aims at inferring the latent function distribution of
f+ for a new (or test) input m.. Using the marginalization prop-
erty [15], (5) can be rewritten as

y K+0iI k.
AR Cl i ®
where k] = [k(m.,m1),..., k(m.,myp)], and kv = k(m., m.).

The predictive distribution of f., or posterior of f., can be obtained
by conditioning (6) on the data as

fely, X, m. NN(Ic;r [K+giI]7ly,
(N
bee = k] [K +020) k).

The extension to a multivariate predictive distribution with test data
X, = [mua,...,m.r] is straightforward and yields

Py X, X~ N (K [K+020) 'y,
(®)
K..-K! [K+01] K.

where K .;; = k(m.;, m;) and K ..ij = k(m.., m.;).

Different kernels can be used in (8) [15]. Here we use the Gaus-
sian kernel

kmg,ma) = ofexp {~izllm, ~myl*} - ©

for its smoothness and non-informativeness, as we lack any knowl-
edge about the unknown function f(-). Hence, the function esti-
mation is done in a reproducing kernel Hilbert space (RKHS) with
universal approximating capability [17, p. 35].

We estimate the noise variance and the kernel hyperparameters
inf = {O'J%, s?, 02} by maximizing the marginal likelihood function
p(y|X). Hence,

6 = arg, maxlog p(y| X, 0) (10)

where
1 - 1
logp(y| X, 0) :*in [K+U2I} 1y7510g|K+021|

— % log(2m).

!The zero mean can be considered even for hyperspectral signatures since
we can first subtract the pixel by its mean.

Using the minimum mean squared error (MMSE) criterion, the
predictor g, of y is defined as the mean of the predictive distribution
in (8). Thus the GP estimator g, of the observation y is

@ :fMMSE:KI [K+O'ZI:|_1y (11)

g *

4. NONLINEAR MIXTURE DETECTOR

Given an observation vector y, we formulate the nonlinear mixture
detector as the following binary hypothesis test problem

12)

Ho:y=Ma+n
Hiry=g(M)+n

where we assume that the endmember matrix M is available or has
been estimated from the image using an endmember extraction tech-
nique [5].

We propose to compare the fitting errors resulting from estimat-
ing y using an LS estimator and the GP-based estimator (11). Under
Ho, both the LS and the GP-based estimators should provide good
estimates, while under 1 the LS estimation error should be signifi-
cantly larger than that resulting from the GP-based estimation. Next,
we describe the two estimation errors.

4.1. LS fitting error
The LS estimation error is given by
e=y-y, 13)
where ¢, = M a is the LS estimator of y, with
a=(M"M)""M'y. (14)
Then, simple calculation yields
e, = Py (15)

where P = I, — M (M "M)~'M " isan L x L projection matrix
ofrank p = L — R.

4.2. GPM fitting error

The GP-based estimation error is given by
e =y—1, (16)

where g, is determined using (11) with X, = X. This is be-
cause our interest is to evaluate the fitting between the model and
the available data, and not to make predictions for new data. Hence,
the fitting error from (11) becomes

e =y— M| = Hy a7

where H = I, — K" [K + U%I } -1 is a real valued symmetric

matrix of rank L.



4.3. The test statistics

To decide between Ho and H1 we propose to compare the squared
norms of the two fitting error vectors. In doing that, we also need
a test statistics whose distribution is known or at least can be ap-
proximated, so that a threshold test can be adjusted from a given
probability of false alarm (PFA) and the detector can be designed.
Given these objectives, we propose the test

2 H
= llesl” 2
llegll? + llecl® #,

(18)

where 7 is the detection threshold. The reasoning behind the choice
of T is as follows. First, as e, and e, are normally distributed, both
lleg||I* and ||e;||* are chi-square random variables. Now, we write
ey as ey + €, where € is assumed to be also Gaussian and neglect the
cross-term 2e, €, compared to ||€||*, when evaluating |e||* under
Ho. The latter approximation is due to the lack of correlation be-
tween e, and €, which can be largely attributed to mismatches result-
ing from the numerical optimization required to solve in (10). Under
these considerations, (18) can be written as T = Z/(Z + ||€||?)
with both Z and ||€||? independent and chi-square distributed. Such
a statistics is known to follow a Beta distribution [18].

As the GP-based estimator tends to fit better a nonlinearly mixed
data, 7" should be less than 1 in this case. Conversely, 71" should be
close to one for linearly mixed pixels, as ||€||* tends to be much less
than 2||e,||*>. Hence, as per (18), we accept Ho if T > 7 and we
conclude for the nonlinear mixing (of H1) if T < 7.

5. EXPERIMENTS

In this section we present some experiments performed using syn-
thetic and real data.

5.1. Synthetic Data

To test the performance of the detection method proposed in the pre-
vious section, we generated synthetic data that contain both linearly
and nonlinearly mixed pixels. The amount of nonlinearity is charac-
terized by a degree of nonlinearity. The linearly mixed pixels were
generated using the LMM (2) with a known matrix M. The non-
linearly mixed pixels were generated using the simplified general-
ized bilinear model (GBM) used in [14], with a new scaling that
permits the control of the degree of nonlinearity for each nonlinear
pixel generated. The nonlinearly mixed pixels were generated using
the following model

y=rxMa+p+n (19

where 0 <k <1, p =7 Zf:ll Zf‘:i_H aia;m; ®m; is the non-
linear term, - is the parameter that governs the amount of nonlinear
contribution, and © is the Hadamard product. Given the parameters
(M, a, v and ¢2), this model generates samples with same energy
and SNR as the LMM if

K = [72Em n \/4E§H —AE(E, — Ee)] /2B, (0)

where E; = ||y,||* is the energy of a noiseless linear pixel (i.e.
a'M " Ma), Ee = yz;t is the “cross-energy” of the linear and
nonlinear parts, and E,, = ||| is the energy of the nonlinear con-
tribution. The degree of nonlinearity of a pixel is then defined as the
ratio

2/€Eeﬂ + EH
K2E, + QKEK‘L + EH ’

Na = @y

For the simulations presented here, the endmember matrix M
was composed by R = 3 materials (green grass, olive green paint
and galvanized steel metal) extracted from the spectral library of the
software ENVI™ [19]. Each endmember m, has L = 826 bands
that were decimated to L. = 83 bands for simplicity. The abun-
dance vector @ = [0.3, 0.6, 0,1] " was fixed, and o2 = 0.0011 was
chosen to produce an SNR of 21dB for both linear and nonlinear
samples.

Figure 1 presents the empirical Receiver Operating Character-
istic (ROC) curves for both the LS-based detector presented in [14]
and the GP detector (18) for v = 1 (ng = 0.21), v = 3 (na = 0.55)
and v = 5 (ng = 0.80). It can be verified that the GP detector
presents an improved performance in all three cases. As an exam-
ple, for v = 3 and PFA = 0.1 the LS detector has a probability of
detection (PD) in the order of 0.45, while the GP detector leads to
PD =~ 0.9. These results indicate that the extra computational com-
plexity required by the GP detector is justified for detecting nonlin-
early mixed pixels independently of the nonlinear mixing model.
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Fig. 1: (a) Empirical ROCs for the LS-based detector for 20,000
synthetic samples (10,000 for each hypothesis). (b) Empirical ROCs
for the GP detector for 4,000 samples (2,000 for each hypothesis).
The data was generated using (2) and (19), and the nonlinear pixels
were generated with v = [1, 3, 5] (na = [0.22, 0.55, 0.80]). (c)
Comparison of the empirical ROCs for GP and LS detectors for v =
3 and 4,000 samples. The noise power (o2) was chosen in the three
tests to obtain a SNR of 21dB.

5.2. Unknown M

In this section we illustrate the sensitivity of the detection perfor-
mance to the endmember estimation as a function of the degree of
nonlinearity. These results are for an endmember extraction using
the well-known vertex component analysis (VCA) [20]. Figure 2
presents the results of 4 experiments using synthetic data with 5,000
samples, SNR of 21dB, random abundances, and proportion of non-
linearly mixed pixels in the image varying from 10% to 50%. For
every experiment, the endmember matrix was extracted using VCA.
These results show how the detection performance can degrade as



the number of nonlinear pixels increases and VCA looses accuracy
in extracting the endmembers from the image.
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Fig. 2: ROC:s for different proportions of nonlinearly mixed pixels.

5.3. Real Data

To test the GP detector using real images, we used the well-known
data set available at the Indian Pines test site in North-western In-
diana [21]. This image was captured by the AVIRIS (Airborne Vis-
ible/Infrared Imaging Spectrometer), and has 145 x 145 samples.
Each sample has 220 contiguous bands with wavelengths ranging
from 365.9298 to 2497.036 nm. Prior to analysis, noisy and water
absorption bands were removed resulting in a total of 200 bands that
were decimated to 50 to speed up simulations. The data set has a
ground truth map that divides the samples in 17 mutually exclusive
classes. Figure 3(a) presents a 50 x 50 pixels image from the In-
dian Pines region. Figure 3(b) presents the ground truth map for this
same region, where each class is represented by a different color.
The detection was performed in small scenes (10 x 10 windows) of
the original image at a time. This window was moved in the original
scene to get a 50 x 50 pixels detection map. For each new image
window, the endmembers were extracted as follows:

1. we computed PCA for each class in the window and kept only
the eigenvector corresponding to the largest eigenvalue;

2. we projected the data of each class onto the corresponding
eigenvector and computed de reconstruction error;

3. we computed one endmember by class by averaging the 50%
of the pixels that had the smaller reconstruction error;

4. we performed this procedure for every window.

Once the endmember matrix had been estimated as described above,
we computed a detection threshold for each window as follows:

1. we created a synthetic linear image Y, = M A, for which
the endmember matrix M was extracted using the previous
procedure and A was computed using LS;

2. we then computed the detection statistics 7'|Ho under Ho for
Y s asin (18);

3. finally, we adjusted a Beta distribution F5(.) to T'|Ho, and
computed 7 = Fz~ ' (PFA)

The detection threshold was determined as described above for a
PFA = 0.001. Figure 4 shows the ground truth map superimposed
by the detection map, where the black circles mark the pixels de-
tected as having nonlinear mixtures of the endmembers. The non-
linear mixtures where detected mainly at the class boundaries and at
the background.
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(a) Indian Pines. (b) Ground Truth.

Fig. 3: (a) Presents a 50x50 pixels image of the Indian Pines. (b)
shows the ground truth map, were each color corresponds to a dif-
ferent material.

GP Detection
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Fig. 4: Detection: black circles mark the pixels detected as having
non-linear mixing.

6. CONCLUSIONS

A GP-based nonlinearity detection strategy was introduced to detect
nonlinearly mixed pixels in hyperspectral images. The proposed de-
tector does not require the use of a parametric model for the under-
lying nonlinear mixing function. Simulations using synthetic data
indicate that the proposed detector outperforms a robust method pre-
viously presented in the literature. The performance of the detector
was also studied as a function of the degree of nonlinearity of the
nonlinear pixels, and as a function of the amount of nonlinearity in
a given hyperspectral image. Finally, the new detector was tested on
a real hyperspectral image.
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