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Abstract—Image deblurring techniques are effective tools to
obtain high quality image from acquired image degraded by
blur and noise. In applications such as astronomy and satellite
imaging, size of acquired images can be extremely large (up
to gigapixels) covering a wide field-of-view suffering from shift-
variant blur. Most of the existing deblurring techniques are
designed to be cost effective on a centralized computing system
having a shared memory and possibly multicore processor. The
largest image they can handle is then conditioned by the memory
capacity of the system. In this paper, we propose a distributed
shift-variant image deblurring algorithm in which several con-
nected processing units (each with reasonable computational
resources) can deblur simultaneously different portions of a
large image while maintaining a certain coherency among them
to finally obtain a single crisp image. The proposed algorithm
is based on a distributed Douglas-Rachford splitting algorithm
with a specific structure of the penalty parameters used in
the proximity operator. Numerical experiments show that the
proposed algorithm produces images of similar quality as the
existing centralized techniques while being distributed and being
cost effective for extremely large images.

Index Terms—Distributed optimization, proximal projection,
shift-variant blur, inverse problems, image deblurring.

I. INTRODUCTION

For many applications, it is essential to have high resolution
images for precise analysis and inference. However, a certain
amount of degradation (blur and noise) in acquired images
is inherent to many imaging systems due to several physical
factors. The image deblurring techniques are proven to be
economical ways to enhance resolution, and signal-to-noise
ratio. In general, image deblurring is an ill-posed inverse
problem. In Bayesian setting, it is expressed as maximum-
a-posteriori estimation problem, which can be casted to the
following optimization problem

argmin
x
{Ψdata(y,x) + λ Ψprior(x)} (1)

where vectors y ∈ Rm and x ∈ Rn represent the two
dimensional (2D) acquired (observed) and unknown (true)
images, obtained by lexicographically ordering their pixels
into vectors. Ψdata is called data-fidelity term and depends
upon the noise and the image formation model. Ψprior is
called regularizer and promotes som prior knowledge on the
unknown image x. The scalar parameter λ keeps trade-off
between these two terms.

Blur in an acquired image can be characterized by the
point-spread-function (PSF). For a narrow field-of-view, the
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blur is shift-invariant, and blurring is thena convolution be-
tween image and PSF. In the case of wide field-of-view,
the blur is usually shift-variant, and then blurring is not
a mere convolution. There does not exist any efficient and
straight-forward way for shift-variant deblurring. However,
there are some fast approximations proposed in [1,2]; see
[3] for detailed comparison between the different approx-
imations. If we approximate the noise in observed image
by a non-stationary white Gaussian noise as considered in
[4] (see [5] for more refined noise model), the discrete
image formation model can be written as: y = H x + ε.
The matrix H ∈ Rm×n denotes the bluring operator. Usually
m < n since the observed image is restricted by the physical
size of the sensor. ε denotes a zero-mean non-stationary white
Gaussian noise, i.e. ε(`) ∼ N (0,σ2(`)) with σ2(`) denoting
the noise variance at the `th entry of y.

Let us introduce some more notations. Hereafter, upper-case
and lower-case bold letters will denote matrices and vectors,
respectively. If X denotes Euclidean space, then 〈·, ·〉 denotes
the standard inner product on X , and ‖·‖ represents Euclidean
norm. If V denotes a positive definite linear operator of X
onto itself, then 〈x,y〉V = 〈x,Vy〉, and ‖ · ‖V represents the
corresponding norm. When V is a diagonal operator of the
form (Vx) : ` 7→ α(`)x(`), we equivalently denote ‖x‖2V by
‖x‖2α =

∑
`α(`) x(`)

2. If L is a linear operator, then LT

denotes the adjoint operator.
Considering the above image formation model, the image

deblurring problem (1) can be explicitly expressed as

argmin
x≥0

{1
2
‖y −H x‖2W + λ φ(D x)} (2)

where the matrix W is diagonal with its elements given by
W(`, `) = 1/σ2(`) for the observed pixels, and W(`, `) = 0
for unmeasured pixels. The function φ is some regularizer
and D some linear operator, e.g., finite forward difference or
some discrete wavelet transform. Depending upon the structure
of the two terms in (2), the solution can be found by any
fast algorithm from the existing vast literature on numerical
optimization methods. We refer the readers to [6]–[9] and
the references therein for the recent and fast optimization
algorithms, especially for inverse problems in imaging.

Motivation: Image deblurring is a well studied topic, and
there is a vast literature [4,5,7,8,10] for moderate size (few
megapixels) images with shift-invariant blur. The applications
in astronomy, satellite imagery and others are able to capture



extremely large images (up to gigapixels) of wide field-
of-views suffering from shift-variant blur. Image deblurring
becomes further complicated when shift-variant blur occurs.
Some works [1]–[3] proposed efficient shift-variant image
deblurring methods. However, all the methods listed above
are designed and implemented to be efficient on a central-
ized computing system having a shared memory space, and
possibly multicore processor. Hereafter, we will refer to them
as centralized deblurring methods. The largest image they can
deblur is limited by the capacity of physical memory available
on the system. Practically, it is not possible to build a single
centralized system having several processor cores and a huge
shared memory. Modern distributed computing infrastructures
are proving to be far more cost effective for solving huge-
scale problems than centralized systems. A distributed com-
puting system consists of several connected processing nodes
each having a reasonable number of processors and sufficient
memory capacity. The nodes communicate together to achieve
a common goal. Many applications in machine learning, data
mining, and others are already benefiting from distributed
computing approaches for learning patterns from huge datasets
possibly located at different locations. As per our knowledge,
there are very few works [11,12] considering distributed
computing approaches for image restoration/reconstruction.

Contribution: In this paper, we propose a distributed ap-
proach for deblurring large images suffering from shift-variant
blur. Our approach is based on splitting the large acquired
image into sufficiently small overlapping blocks provided that
one is able to sample local PSFs within each block. We refor-
mulate the original problem (2) into a distributed optimization
problem by introducing certain approximations. Then, we
solve it with a distributed version of Douglas-Rachford (D-R)
splitting algorithm by imposing certain consensus among the
blocks such that we finally obtain a deblurred image without
discontinuity among the blocks. The experimental results show
that our distributed image deblurring method is able to achieve
similar quality of deblurred image as centralized deblurring
methods while allowing distribution, and thus being cost
effective for extremely large image.

II. DISTRIBUTED APPROACH FOR IMAGE DEBLURRING

High-speed links among the nodes of distributed system
may not be always possible. Thus, an efficient distributed
algorithm is the one which is computation intensive rather than
communication intensive. For shift-variant image deblurring,
a possible approach is to use the distributed array abstraction
available on modern distributed system, and reimplement the
existing centralized methods [2,3] using distributed arrays.
However, the bottleneck of such approaches is extensive data
communication among the nodes at each iteration of the
optimization algorithm, e.g., each time H or HT is applied, the
nodes need to exchange a large amount of data. To avoid such
a bottleneck, a possible approach is to split the large image
into sufficiently small contiguous blocks, and deblur them
locally at the different nodes while exchanging information to
maintain coherencies among the blocks, but only after certain

intervals or certain suboptimality is met. The fast approxima-
tion of shift-variant blur operator based on PSF interpolation
described in [3] provides an interesting idea in this direction. If
blur varies smoothly in field-of-view, then PSF at any location
in the field can be well approximated by linear combination
(interpolation) of only few PSFs sampled on a regular grid
points within the field. First-order 2D interpolation weights are
sufficient to render smooth variation of the blur within the field
while keeping the shift-variant blur operator computationally
efficient [2,3]. This suggests us to split the acquired image
into overlapping blocks, approximate the regularizer on the
whole image by sum of the regularizers on the blocks, and
then deblur the blocks locally while imposing consensus on
overlapping pixels by weighted average using first-order 2D
interpolation weights. This will result into a deblurred image
without any discontinuities among the blocks. Moreover, any
incoherencies arising due to the approximation made on the
regularizer will be compensated by the overlaps and the con-
sensus among them. Below, we present formally the proposed
distributed approach for shift-variant deblurring.

A. General Setting

Consider a distributed computing system with a set of
N connected processing nodes. Given an observed image
y ∈ Rm, and the PSFs hi, i = 1, · · · , N sampled at
regular grid points within the field-of-veiw, we split y into
overlapping blocks yi ∈ Rmi , i = 1, · · · , N . As in [3], we
consider first-order 2D interpolation weights ωi, i = 1, · · · , N
corresponding to the overlapping blocks yi. Fig. 1 illustrates
the splitting, and the shape of the interpolation weights for 1D
signal. We distribute the blocks yi, the corresponding local
blur operators Hi ∈ Rmi×ni , and the interpolation weights
ωi among the nodes. We then, seek to distributively estimate
the whole unknown crisp image x ∈ Rn. Let us denote by
P1, . . . ,PN a collection of N subsets of {1, . . . , n}. For every
i = 1, . . . , N , we assume that the ith node is in charge of
estimating the components of x corresponding to the indices
Pi. The subsets P1, . . . ,PN are overlapping. Hence, different
nodes handling a common component of the parameter vector
xmust eventually agree on the value of the latter. We introduce
formally the product space X := RP1×· · ·×RPN , and denote
by C the set of vectors (x1, . . . ,xN ) ∈ X satisfying the
restricted consensus condition ∀(i, j) ∈ {1, . . . , N}2, ∀` ∈
Pi ∩ Pj , xi(`) = xj(`). Moreover, we assume that ev-
ery ith node is provided with a local convex, proper and
lower semicontinuous function fi : RPi → (−∞,+∞]. We
consider the following constrained minimization problem on
RP1 × · · · × RPN :

argmin
x1···xN

N∑
i=1

fi(xi) s.t. (x1, . . . ,xN ) ∈ C . (3)

The local cost function fi is composed of the local data-fidelity
term 1

2‖yi −Hi xi‖2Wi
for some positive semidefinite Wi

as in (2), a regularizer φi and positivity constraint on xi,
i.e., xi ∈ RPi

+ . If A is a set, the notation ιA stands for the
indicator function of the set A, equal to zero on that set and



Fig. 1. An 1D illustration showing the splitting of the observed image, the
extent of the overlap, and shape of the interpolation weights. The crossbar on y
are the regular grid points where hi are sampled. xi are the locally deblurred
blocks at ith nodes obtained from the corresponding yi. The dashed parts at
the ends of each xi are the extra pixels estimated at boundaries assuming
no measurements were available for them. ωi are the interpolation weights
corresponding to the support of xi, and its values are within range [0, 1] such
that

∑3
i=1 ωi(`) = 1, ∀` = 1, · · · , n.

to +∞ elsewhere. Thus, the local cost functions needed to be
minimized at the nodes have the form:
fi(xi) =

1

2
‖yi −Hi xi‖2Wi

+ λ φi(Di xi) + ιRPi
+

(xi)

where φi are convex, proper and lower semicontinuous func-
tions and Di are linear operators on RPi . Thus, the overall
cost functions fi, i = 1, · · · , N are convex, proper and
lower semicontinuous functions, and so is the problem (3).
Note that xi are estimated little larger than yi to avoid
boundary artifact arising due to circular blur assumption; see
[8] for details.

B. Optimization Algorithm

For any convex, proper and lower semicontinuous function
h : X → (−∞,+∞], let us introduce the proximity operator

proxV−1,h(v) = argmin
w∈X

h(w) +
‖w − v‖2V

2
, for all v ∈ X .

To solve (3), we consider D-R Splitting algorithm [13], and
reformulate (3) as

argmin
x∈X

f(x) + g(x) (4)

where g = ιC is the indicator function of C and f(x) =∑
i fi(xi) for every x = (x1, . . . ,xN ) in X . Let ρ(k) be a

sequence in ]0, 2[, and ε(k)j , j = 1, 2 be sequences in X , then
the iterations of the D-R splitting algorithm writes as:

x(k+1) = proxV−1,f (u
(k)) + ε

(k)
1

z(k+1) = proxV−1,g(2x
(k+1) − u(k)) + ε

(k)
2

u(k+1) = u(k) + ρ(k)
(
z(k+1) − x(k+1)

)
.

Given that the set of minimizers of (3) is non-empty, and
certain conditions on the sequences ρ(k) and ε(k)j , j = 1, 2 are
met, then the sequence x(k) converges to a minimizer of (4) as
k →∞; see [14, Corollary 5.2] for the proof. The parameter
ρ(k) is referred to as relaxation factor that can be tuned to
improve the convergence speed. The sequences ε(k)j , j = 1, 2
allow some perturbations in the two prox operations, which is

very useful in the cases when the prox operations do not have
closed-form solutions, and rely on some iterative solvers.

From now onward, we assume that V is a diagonal operator
of the form Vx = (V1x1, . . . ,VNxN ), where for every i,

Vixi : Pi → R
` 7→ αi(`)xi(`) ,

where αi(`) is a positive coefficient specified later. For every
` ∈ {1, . . . , n}, we introduce the set P−` = {i : ` ∈ Pi}.

Lemma II.1. For every x ∈ X , the quantity z =
proxV−1,g(x) is such that for every i ∈ {1, . . . , N} and every
` ∈ Pi,

zi(`) =

∑
i∈P−`

αi(`) xi(`)∑
i∈P−`

αi(`)
. (5)

Proof. The proof is straight-forward. The values of zi(`) cor-
responding to the common components (overlapping pixels)
among xi, i = 1, · · · , N is given by weighted average of those
components at the different nodes.

Using the above lemma, we present the proposed distributed
image deblurring approach in Algorithm 1, which will be
referred to as proposed deblurring method. The proposed
method is a synchronous distributed optimization algorithm
without any explicit master node. Given initial guesses of the
local solutions at each node, the first step of Algorithm 1
executes the LOCAL-SOLVER simultaneously at all the nodes
to obtain locally deblurred blocks, and then synchronizes all
the nodes. In the second step, it exchanges the common
components among the nodes, and performs the consensus
operation distributively on all the nodes. Finally, it updates
distributively the local copies of the variable u(k).

Similar to the variants of ADMM [7]–[9], the convergence
speed of D-R splitting algorithm is dependent upon the penalty
parameters αi. Selecting optimal values of penalty parameters
for fast convergence is still an open challenge. We select αi =
γ ωi for γ > 0, so that we can tune γ to achieve possibly fast
convergence, and as well impose smooth variation of the blur
among adjacent blocks.

III. NUMERICAL EXPERIMENTS AND RESULTS

A. Experimental Setup

To evaluate the proposed deblurring method, we performed
numerical experiment on shift-variant image deblurring under
different parameter settings. We considered grayscale “Bar-
bara” image, resized it to 1151×1407 pixels, and extended its
dynamic range linearly to have maximum intensity up to 6000
photons/pixels. We will refer to this image as reference image
shown in Fig. 3(b). We generated 9 × 9 grid of normalized
Gaussian PSFs each of 201× 201 pixels with the central PSF
having full-width-half-maximum (FWHM) equal to 3.5× 3.5
pixels, and increased the FWHM linearly along the radial
direction up to 16.5 × 10.5 pixels for the PSF at extreme
corner of the reference image as shown in Fig. 3(a). We
blurred the reference image with these PSFs using shift-variant
blur operator based on PSF interpolation [3]. We obtained
the observed image, shown in Fig. 3(c), by adding white



Algorithm 1 PROPOSED DISTRIBUTED IMAGE DEBLURRING

procedure DISTRIBUTED-SOLVER

Initialize: ui ← u
(0)
i ,∀i = 1, 2, · · · , N

while not converged do
for i = 1 . . . N do
xi ← LOCAL-SOLVER(ui ;αi, fi)

end for
for ` = 1 . . . n do

Compute distributively at nodes i ∈ P−` :
z̄i(`)←

∑
i∈P−

`
ωi(`)(2xi(`)− ui(`))

end for
for i = 1 . . . N do
ui(`)← ui(`) + ρ

(
z̄i(`)− xi(`)

)
for all ` ∈ Pi

end for
end while
return x1, . . . ,xN

end procedure
procedure LOCAL-SOLVER(u ;α, f )
w ← proxα−1,f (u) = arg minw{f(w) + 1

2
‖w − u‖2α}

return w
end procedure
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Fig. 2. Comparison of the three approaches in term of image quality (SNR) at
different levels of regularization. The legends “Central-3x3”, “Proposed-3x3”,
“Indpndt-3x3” denote the centralized, proposed, and independent methods,
respectively, when using 3 × 3 grid of PSFs. Other legends have similar
meanings. The dark line denotes the SNR of the observed image.

Gaussian noise of variance σ2 = 400 to the blurred image.
We deliberately chose low level noise in the observed image
so that any incoherency arising in the deblurred image due to
the approximations we made was not superseded by the strong
regularization level required for low signal-to-noise ratio.

In order to compare the performance of the proposed
method, we considered two other possible approaches. Since,
the image we considered was not very large, thus the first
method we selected was the centralized method, which solves
the original problem (2) using the shift-variant blur operator
based on PSF interpolation. The second method we selected
was a naı̈ve “split, deblur independently and blend” approach
in which the final deblurred image was obtained by blending
together the independently deblurred blocks. Blending is done
using weighted averaging (5) with the same first-order 2D
interpolation weights ωi as in the proposed method. Though
the second method is not intended to solve either the original
problem (2) or the distributed problem (3), it is a straight-

forward way to deblur a large image with minimal computa-
tional resources. Hereafter, we will refer to the second method
as independent deblurring method.

We chose φi be Huber loss function and Di be circular
forward finite difference operator, so the regularizer writes as

φi(Dixi) =

{
1
2‖Dixi‖22, if ‖Dixi‖2 ≤ δ
δ(‖Dixi‖2 − δ

2 ), otherwise
We chose this regularizer so that the local cost functions fi
is differentiable, and chose a quasi-Newton method: limited
memory variable metric with bound-constraint (VMLM-B)
[15] as the LOCAL-SOLVER. VMLM-B does not require any
manual parameter tuning for fast convergence. Thus, this left
us with only a single parameter γ to be tunned for fast
convergence of the proposed method. Moreover, we used
VMLM-B for solving the optimization in both the centralized
and independent deblurring methods.

For all experiments, we fixed ρ(k) = 1, and after few trials,
we found that γ = 0.001 resulted into a fast convergence of
Algorithm 1. All the results presented below were obtained
after 25 iterations of Algorithm 1; it was observed that 25-
30 iterations were generally sufficient. For the centralized
and independent deblurring methods, we allowed VMLM-B
to perform 1000 iterations or until it met its own stopping
criterion.

B. Results

We considered two image quality metrics: signal-to-noise
ratio (SNR) and Structural Similarity Index (SSIM) for com-
paring the quality of the deblurred images. We fixed heuris-
tically the parameter δ = 100, and performed the image
deblurring for different values of λ in a wide range to see if
one of the methods performs better than the others for certain
values of λ. Moreover, we considered 3× 3, 5× 5 and 6× 6
grid of PSFs to see the effect of better approximation of shift-
variant blur.The second row of Fig. 3 shows the deblurred
images obtained by the three approaches when using 6 × 6
grid of PSFs. The plots in Fig. 2 compare the performance
of the three deblurring approaches in term of image quality
obtained for different values of λ, and different density of
PSF grid. We observe that the naı̈ve independent deblurring
method, as expected, performed worst among the three. As
pointed out above, this is due to the fact that it is the crudest
and computationally cheapest way to perform shift-variant
image deblurring by splitting image into pieces. The next
important aspect we noticed is that the quality of deblurred
image improves drastically when using denser grid of PSFs.
This can be accounted by the fact that finer grid of PSFs
are able to approximate more accurately the true variation of
blur than a coarser grid of PSFs. A similar observation has
been also noted in [3]. We also noticed that the quality of
the deblurred image obtained by proposed method is slightly
lower than those by centralized method. This could be due to
two reasons: (i) some information at the boundaries of each
deblurred blocks are lost, and (ii) the approximation made in
the regularization can impact negatively for some image.



(a) Shift-variant normalized Gaussian PSFs (b) Reference image (1151× 1407 pixels). (c) Observed image with regular 6×6 grids points

(d) Estimated by centralized deblurring SNR =
12.3278 dB, SSIM = 0.7767 at λ = 0.002

(e) Estimated by proposed deblurring SNR =
12.0239 dB, SSIM = 0.7764 at λ = 0.002

(f) Estimated by independent deblurring with SNR
= 11.6696 dB, SSIM = 0.7736 at λ = 0.004

Fig. 3. Experimental setup for shift-variant deblurring and the deblurred images obtained by three methods using 6× 6 grid of PSFs. The crossing points of
the green lines in (c) are the grid points where PSFs are sampled.

IV. CONCLUSION

The paper proposed a distributed shift-variant deblurring
algorithm scalable up to extremely large images that cannot be
handled by the existing centralized deblurring methods. The
proposed algorithm is rather generic in the sense that it can be
easily extended to different applications, e.g., shift-invariant
deblurring, or for different combination of data-fidelity and
regularizer. The proposed algorithm is based upon distributed
formulation of classical image deblurring problem by introduc-
ing certain approximations, which may slightly compromise
the quality of the deblurred image. But, the compromise in the
quality is highly compensated by the computational advantages
of distributed computing.
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