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ABSTRACT

The one-class classification problem is often addressed by
solving a constrained quadratic optimization problem, in the
same spirit as support vector machines. In this paper, we de-
rive a novel one-class classification approach, by investigat-
ing an original sparsification criterion. This criterion, known
as the coherence criterion, is based on a fundamental quan-
tity that describes the behavior of dictionaries in sparse ap-
proximation problems. The proposed framework allows us to
derive new theoretical results. We associate the coherence
criterion with a one-class classification algorithm by solv-
ing a least-squares optimization problem. We also provide
an adaptive updating scheme. Experiments are conducted on
real datasets and time series, illustrating the relevance of our
approach to existing methods in both accuracy and computa-
tional efficiency.

Index Terms— support vector machines, machine learn-
ing, kernel methods, one-class classification

1. INTRODUCTION

In machine learning, several problems exhibit only a unique
class for training. The decision rule consists of identifying if
a new instance belongs to the learnt class or to an unknown
class. This machine learning problem is the so-called one-
class classification problem [1, 2]. It has been applied with
success for novelty detection, and extends naturally to tackle
multiclass tasks by learning each class separately [3, 4].

Several methods have been developed to solve this prob-
lem, the most widely studied being the one-class support vec-
tor machines (SVM). It determines a sphere of minimum vol-
ume that encloses all (or most of) the training data, by estimat-
ing its center and radius. One-class SVM takes advantage of
many properties from SVM literature, such as the nonlinear
extension by using kernel functions and the sparse solution.
The sparsity property states that the center of the sphere ex-
plores only a small fraction of the training samples, known as
support vectors (SVs). A quadratic programming technique is
often applied to solve this problem, i.e., identifying the SVs
and estimating the optimal parameters.
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In this paper, we derive a one-class classification machine
based on a new sparsification rule, the coherence criterion.
This criterion is based on the coherence parameter, a fun-
damental quantity that describes the behavior of dictionaries
in sparse approximation problems. We have recently investi-
gated this sparsification criterion, and applied it with success
in nonlinear filtering and online prediction in time series. See
[5, 6]. The coherence criterion provides an elegant model re-
duction criterion with a low computational demanding pro-
cedure. This framework allows us to derive new theoretical
results, mainly an upper bound on the error of approximat-
ing the center by the resulting reduced model. We associate
the coherence criterion with a one-class classification algo-
rithm by solving a least-squares optimization problem. We
also provide an adaptive updating scheme for incrementing
or decrementing the model order.

The rest of the paper is organized as follows. Section 2
outlines the classical one-class SVM. We describe our ap-
proach in Section 3, by providing theoretical results and de-
riving an appropriate one-class classification algorithm. Sec-
tion 4 provides an experimental study on real datasets and
time series.

2. ONE-CLASS SVM

Let x1,x2, . . . ,xn be the set of training samples, et let Φ(·)
be a nonlinear transformation defined by the use of a kernel,
κ(xi,xj) = 〈Φ(xi),Φ(xj)〉. The one-class SVM finds a
sphere, of minimum volume, containing all (or most of) the
training samples. This sphere, described by its center c and its
radius r, is obtained by solving the constrained optimization
problem:

min
r,c,ζ

r2 +
1

νn

n
∑

i=1

ζi

subject to ‖Φ(xi)− c‖2 ≤ r2 + ζi for all i = 1, 2, . . . , n

In this expression, ζ1, ζ2, . . . , ζn is a set of non-negative slack
variables and ν a positive parameter that specifies the tradeoff
between the sphere volume and the number of outliers, i.e.,
samples lying outside the sphere. By introducing the Karush-



Kuhn-Tucker optimality conditions, we get

c =
n
∑

i=1

αiΦ(xi), (1)

where the αi’s are the solution to the optimization problem:

max
α

n
∑

i=1

αiκ(xi,xi)−
n
∑

i,j=1

αiαjκ(xi,xj)

subject to

n
∑

i=1

αi = 1 and 0 ≤ αi ≤
1

νn
for all i = 1, 2, . . . , n.

It is well known that only a small fraction of the training sam-
ples contributes to the model (1). These samples, called sup-
port vectors (SVs), correspond to data outside or lying on the
boundary of the sphere, and consequently contribute to the
definition of the radius r. Thus, any new sample x that satis-
fies ‖Φ(x) − c‖ > r can be considered as an outlier, where
the distance is

‖Φ(x)−c‖2=
∑

i,j∈I

αiαjκ(xi,xj)−2
∑

i∈I

αiκ(xi,x)+κ(x,x),

where I denotes the set of SVs, i.e., training samples with
non-zero αi’s. Let |I| denotes its cardinality.

3. PROPOSED ONE-CLASS METHOD

Let cn denotes the center of the n samples, namely

cn =
1

n

n
∑

i=1

Φ(xi). (2)

We consider a sparse model of the center with

cI =
∑

i∈I

αi Φ(xi), (3)

where the problem consists of properly identifying the sub-
set I ⊂ {1, 2, . . . , n} and estimating the optimal coefficients
αi’s. While classical one-class SVM operates a joint opti-
mization, we consider in this paper a separate optimization
scheme:

1. Identify the most relevant samples in the expansion (3),
by using the coherence parameter in the sparsification
rule.

2. Estimate the optimal coefficients, with optimality in the
least-squares sense, namely by minimizing ‖cn−cI‖2.

3.1. Sparsification rule with the coherence criterion

The coherence of a set {Φ(xi) | i ∈ I} is defined by the
largest absolute value of the off-diagonal entries of the Gram

(kernel) matrix, namely a µ-coherent set is1

µ = max
i,j∈I
i"=j

|κ(xi,xj)|.

With the model order being fixed in advance, we consider
the set of least coherence as the relevant set in the expansion
(3). We have previously applied with success this coherence
criterion in nonlinear filtering. See [5, 6]. In order to consider
this sparsification rule for the one-class problem, one needs to
study the relevance of the sparse model cI (obtained by the
coherence criterion) with respect to the full-order center cn
in (2). The following theorem provides a guarantee that this
approximation error is upper bounded.

Theorem 1. For the sparse solution cI satisfying the coher-

ence criterion, the approximation error can be upper bounded

with

‖cn − cI‖ ≤
(

1− |I|/n
)

√

max
i

κ(xi,xi)− µ. (4)

This upper bound takes the form (1−|I|/n)
√
1− µ for unit-

norm kernels.

Proof. Let PI be the projection operator onto the space
spanned by the elements Φ(xi) for i ∈ I, thus cI = PIcn.
Then, we have

‖cn − cI‖ =
∥

∥

∥

1

n

n
∑

i=1

(1− PI)Φ(xi)
∥

∥

∥

≤
n
∑

i=1

1

n
‖Φ(xi)− PIΦ(xi)‖

=
1

n

∑

i"∈I

‖Φ(xi)− PIΦ(xi)‖

where the inequality is due to the generalized triangular in-
equality, and the last equality to the fact that ‖Φ(xi) −
PIΦ(xi)‖ = 0 for all Φ(xi) belonging to the expansion in
cI , i.e., for i ∈ I. Moreover, we have

‖Φ(xi)− PIΦ(xi)‖2 = ‖Φ(xi)‖2 − ‖PΦ(xi)‖2

= κ(xi,xi)−max
γ

∑

j∈I γjκ(xj ,xi)

‖
∑

j∈I γjΦ(xj)‖

≤ κ(xi,xi)−max
k∈I

|κ(xk,xi)|
κ(xk,xk)

≤ κ(xi,xi)− µ

where the first equality is due to the Pythagorian theorem,
and the second equality follows the fact that the square norm
of the projection of Φ(xi) corresponds to the maximum

1This definition corresponds to a unit-norm kernel, i.e., κ(x,x) = 1
for every x; otherwise, substitute κ(xi,xj)/

√

κ(xi,xi)κ(xj ,xj) for
κ(xi,xj) in the expression.



optimal this paper
one-class same order as in order optimal from

SVM optimal one-class SVM {3, 4, . . . , 15}
iris ntrain|ntest error error shared SVs error |I|

class 0 25|125 1.84 0.49 50% 0.40 3
class 1 25|125 5.28 4.40 40% 1.28 4
class 2 25|125 4.80 4.10 60% 2.88 3

mean: 3.97 2.99 50% 1.52 3
time: (2.5) (0.6) (0.6)

wine

class 0 29|148 15.48 8.89 80% 8.57 7
class 1 35|142 18.26 22.60 70% 16.51 13
class 2 24|154 14.47 17.70 86% 12.81 13

mean: 16.07 16.39 79% 12.63 11
time: (22.2) (0.3) (0.3)

cancer

class 0 222|461 2.30 3.03 40% 2.12 9
class 1 119|563 5.21 4.78 46% 3.80 8

mean: 4.25 3.90 43% 2.96 8
time: (42) (2.4) (2.4)

Table 1. Experimental results with the classification error for
each one-class classifier, and the mean error, as well as the
total computational time (in seconds). The ratio of common
SVs, with respect to the results obtained from the classical
one-class SVM, for each of the proposed methods is given, as
well as the mean ratio of common SVs.

scalar product 〈Φ(xi), ϕ〉 over all the unit-norm functions ϕ,
namely ϕ =

∑

j∈I γjΦ(xj)/‖
∑

j∈I γjΦ(xj)‖. The first in-
equality results from a specific distribution of the coefficients,
with γj = 0 for all j ∈ I except for a single index k with
γk = ±1, depending on the sign of κ(xk,xi). The last in-
equality follows from the coherence criterion.

3.2. Optimal parameters

The coefficients are estimated by minimizing the approxima-
tion error ‖cn − cI‖, namely

α = argmin
αi

∥

∥

∥

1

n

n
∑

i=1

Φ(xi)−
∑

i∈I

αiΦ(xi)
∥

∥

∥

2

,

where α is a column vector of the optimal coefficients αk’s
for k ∈ I. Taking the derivative of this cost function with
respect to each αk, and setting it to zero, we get

1

n

n
∑

i=1

κ(xk,xi) =
∑

i∈I

αiκ(xk,xi), for every k ∈ I.

In matrix form, we obtain

α = K−1κ, (5)

where K is the Gram (kernel) matrix, with entries κ(xi,xj)
for i, j ∈ I and κ is a column vector with entries
1
n

∑n
i=1

κ(xk,xi) for k ∈ I.
An interesting property of the proposed method is that one

can easily increment or decrement the model order, without
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Fig. 1. Time series of the chlorine concentration, with one
day for training (blue) and the next 3 days for error estimation
(red).

the need to operate from scratch as in SVM. For instance2,
one does not need to inversion the new Gram matrix. Let
K−1

m be the Gram matrix defined on the set I with cardinality
m. If one wishes to increment the model order to m + 1 by
injecting the entry xk, then we have

Km+1 =

[

Km b

b$ κ(xk,xk)

]

where b is the vector with entries κ(xk,xi) for all i ∈ I.
Then, the inverse of Km+1 can be computed using the block
matrix inversion identity, with

K−1
m+1 =

[

K−1
m 0

0
$ 0

]

+
1

c

[

−K−1
m b
1

]

[

−b$K−1
m 1

]

,

(6)
where c = κ(xk,xk)−b$K−1

m b and 0 is a m-length column
vector of zeros. The decremental update can be easily derived
since, by using the notation

K−1
m =

[

Qm−1 q

q$ q0

]

,

we obtain from (6) the update K−1
m−1 = Qm−1 − qq$/q0.

4. EXPERIMENTATION

Multiclass classification

We have tested on three real datasets from the UCI machine
learning repository, and well-known in the literature of one-
class machines [7]: “iris” with 150 samples in 3 classes and 4
features (only third and fourth features are often investigated),
“wine” with 178 samples in 3 classes and 13 features, and
“breast cancer” from Wisconsin with 683 samples in 2 classes
and 9 features.

2Updating expressions for the vectors α and κ can be easily derived, and
were omitted due to space limitation.



In order to provide a comparative study, we considered
the same configuration as in [8]. The Gaussian kernel was
applied, with κ(xi,xj) = exp(−‖xi − xj‖2/2σ2) where
σ is the tunable bandwidth parameter. For an (-class classi-
fication task, a one-class classifier was constructed for each
class, called target class. The target set was randomly parti-
tioned into two subsets, one used for training and the other
for the target test set. The whole test set contains the target
test set and all the samples from the other classes. The classi-
fication error were estimated with the optimal parameters ob-
tained by a ten-fold cross-validation on a grid search over ν ∈
{2−5; 2−4; · · · ; 24; 2−1.5} and σ ∈ {2−5; 2−4; · · · ; 24; 25}.

To compare the proposed method to one-class SVM
(which is also comparable to [8]), we first considered the
same number of SVs as in SVM. Table 1 gives the classifi-
cation errors for both methods, as well as the ratio of shared
SVs. We found that our approach is very competitive with
the same model order as SVM, with up to 80% of common
SVs. We also conducted a series of experiments to identify
the optimal number of SVs for our algorithm, selected from
{3, 4, . . . , 15}. This yields significant accuracy, as given in
Table 1. The computational cost, using the best configuration
of the tunable parameters, are given in terms of CPU time3.

Time series domain description

We also conducted some experiments on a time series. It con-
sists of the variation in chlorine concentration at a given node
in a water network. Chlorine is a highly efficient disinfec-
tant, injected in water supplies to kill residual bacteria. This
time series exhibits large fluctuations due to the variations in
water consumption and an inefficient control system. This
data, taken from the public water supplies of the Cannes city
in France, was sampled at the rate of a sample every 3 min-
utes. We considered 4 days of chlorine concentration mea-
sures. See Figure 1.

To capture the structure of the time series, a 3-length slid-
ing window was used, with xi = [xi−2 xi−1 xi], where the
Gaussian kernel was applied. Only the first day, that is 481
samples, was considered for training and estimating the opti-
mal parameters using a 10-fold cross-validation configuration
with σ ∈ {2−5; 2−4; · · · ; 24; 25}. To be comparable with the
one-class SVM, we considered |I| = 55 for both methods,
obtained from ν = 0.004 in one-class SVM, leading to 60%
of common SVs. Table 2 provides a comparative study, with
training error given by the cross-validation, and the test error
estimated on the next 3 days. This shows the relevance of
our approach, where we also illustrate the upper bound on the
approximation error derived in Theorem 1.

3CPU time estimated on a Matlab running on a 2.53 GHz Intel Core 2
Duo processor and 2 GB RAM.

training time coherence bound test
error (m:ss) µ0 in (4) error

one-class SVM 8.90 % 1:16 — — 63.7 %
this paper 0.20 % 0:02 0.80 0.37 1.9 %

Table 2. Results obtained for the time series problem.

5. CONCLUSION

In this paper, we investigated a new one-class classification
method, by using the coherence criterion. We derived an
upper bound on the error of approximating the center of the
sphere by the resulting reduced model. We incorporated
this criterion into a new kernel-based one-class algorithm by
solving a least-squares optimization problem, and considered
an incremental and decremental schemes. Experiments
were conducted on real datasets to compare our approach
to existing methods. Perspectives include the use of this
approach to derive an online one-class algorithm for novelty
detection.
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