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ABSTRACT

To overcome inherent hardware limitations of hyperspectral imaging
systems with respect to their spatial resolution, fusion-based hyper-
spectral image (HSI) super-resolution is attracting increasing atten-
tion. This technique aims to fuse a low-resolution (LR) HSI and
a conventional high-resolution (HR) RGB image in order to obtain
an HR HSI. Recently, deep learning architectures have been used
to address the HSI super-resolution problem and have achieved re-
markable performance. However, they ignore the degradation model
even though this model has a clear physical interpretation and may
contribute to improve the performance. We address this problem by
proposing a method that, on the one hand, makes use of the linear
degradation model in the data-fidelity term of the objective function
and, on the other hand, utilizes the output of a convolutional neural
network for designing a deep prior regularizer in spectral and spatial
gradient domains. Experiments show the performance improvement
achieved with this strategy.

Index Terms— Super-resolution, hyperspectral imaging, opti-
mization, spectral-spatial gradient domain, deep learning

1. INTRODUCTION

Hyperspectral imaging systems collect images of a scene using con-
tiguous spectral bands ranging from ultraviolet to visible and in-
frared. Hyperspectral imaging is beneficial in applications as di-
verse as remote surveillance, medicine, and environmental monitor-
ing. Unfortunately, many factors such as noise and low sensing res-
olution can cause image degradation during the acquisition process.
Image restoration methods are often employed before further pro-
cessing. Recently, it has become popular to restore an HR HSI by
fusing an LR HSI and an HR RGB image. This framework, often
called fusion-based HSI super-resolution [1], raises the challenge of
accounting correlation between spectral bands while ensuring spatial
consistency [2].

In the scope of this work, we consider the problem of construct-
ing an HR HSI X ∈ RB×L×W via the fusion of an LR HSI Y ∈
RB×l×w and an HR RGB image Z ∈ Rb×L×W , where B and b are
the numbers of spectral channels of the hyperspectral image and the
RGB image, respectively, with B > b, and (L × W ) and (l × w)
denote the dimensions of the HR image and the LR image, respec-
tively, with L > l and W > w. Images X , Y and Z can be reshaped
in matrix forms X ∈ RB×N ,Y ∈ RB×n and Z ∈ Rb×N , respec-
tively, where N = L×W and n = l×w are the numbers of pixels
in each band of the HR and LR images. Considering a linear degra-
dation model, Y and Z can be interpreted as down-sampled versions

Fig. 1. HSI super-resolution with deep priors and model degradation
inversion accounting for spatial/spectral gradient deviation of HSIs.

of X ∈ RB×N in the spatial and spectral domains, respectively:

Y = XBS, Z = RX, (1)

where B ∈ RN×N is the spatial blurring matrix, S ∈ RN×n is a
downsampling operator with factor s = L/l, and R ∈ Rb×B de-
notes the spectral response function (SRF) of the RGB camera. The
HSI super-resolution problem can be formulated as the estimation of
X given the observed data Y and Z, with known system responses
B, S and R. Based on (1), this problem can be written as the mini-
mization of an unconstrained objective function of the form:

J(X) = ∥Y −XBS∥2F + ∥Z−RX∥2F + φ(X) (2)

where φ(·) is some regularization function. Reconstructing X from
Y and Z by minimizing (2) without φ(·) is a highly ill-posed prob-
lem. This justifies the use of φ(·) to constrain the solution space by
promoting prior information on X.

Under the classic optimization framework, handcrafted forms of
φ(·), which promote the sparsity, spatial continuity and edge pre-
serving, have been intensively studied for this problem [1, 3–6], and
also for other highly related problems [7, 8]. However, designing a
powerful φ(·) is not trivial and may also cause difficulty in finding
optimal solutions. Inspired by the success of deep learning in com-
puter vision, convolutional neural networks (CNN) have been used
to get X from the fusion of Y and Z [9–12]. Deep learning meth-
ods require less handcrafted prior information on X and have been
shown to achieve significant performance enhancement compared to
model-based methods such as (2). However, they need massive data
for training and may not be consistent with the physical degrada-
tion model of form (1) involving Y and Z. A brief review of these
methods is given in Section 2.

To leverage the merits of both model-based and deep learning
methods, recent approaches have started to plug the output of a CNN,
denoted as X̃, into the objective function (2) as a deep prior regular-
izer [13–15]. Specially, the Frobenius norm φ(X) = ∥X− X̃∥2F is



considered in [13,14]. It allows the use of a fast off-the-shelf solver.
The 2D Total Variation (TV) norm φ(X) = ∥X− X̃∥2TV +∥X∥TV

is used in [15]. It is applied to each band independently from the
others to enforce smoothness in the spatial domain. Nevertheless,
none of these methods simultaneously exploits the spectral-spatial
gradient information for enhancing fusion process.

The aim of this paper is to introduce a novel strategy for HSI
super-resolution that, on the one hand, makes use of the physical
linear degradation model in the data-fidelity term of the objective
function and, on the other hand, exploits the spectral-spatial gradient
difference of HSIs using a deep prior regularizer from the output
of a convolutional neural network. Experimental results show the
performance improvement achieved with this strategy.

Notation: X , X and x refer to the same 3D image X : matrix X
is obtained by arranging the pixel column vectors in X next to each
other; vector x is obtained by stacking the columns of X on top of
each other. This notation system also works for other images.

2. RELATED WORKS

In this section, we provide a brief overview on some existing meth-
ods to facilitate the presentation of our method.

2.1. Model-based methods
Solving HSI super-resolution and unmixing in a joint framework has
been demonstrated to significantly improve the super-resolution per-
formance. In [1], the authors perform a joint unmixing of Y and
Z that allows them to split the initial optimization problem into two
constrained quadratic sub-problems, which can be solved efficiently.
In [3], the authors reconstruct the latent X by using a variable split-
ting technique w.r.t. its endmembers and their corresponding abun-
dances. Considering the similarity between neighboring pixels, the
authors in [4] enforce group-sparsity and non-negativity properties
in small image cubes. In [5], the authors introduce a non-negative
sparse coding method to exploit the sparsity of pixels and non-local
spatial similarity of the latent X. Another strategy in HSI super-
resolution consists of tensor-based factorization. For instance, a
graph Laplacian-guided coupled tensor decomposition model is pro-
posed by the authors in [6] to exploit the spatial-spectral information
of HSI and RGB images.

2.2. Deep learning methods
Recently, deep learning has been proved to be an effective data-
driven technique for solving HSI super-resolution problem. In [9],
the authors design a CNN with 3D convolution to fuse Y and Z
and obtain X in an end-to-end manner. The PanNet architecture is
proposed in [10] to preserve spectral and spatial information in HSI
super-resolution problem. In [11], the authors unfold an iterative
algorithm into a deep network called MHF-net. This algorithm is
based on a novel LR/HR fusion model which takes the degradation
models of Y and Z as well as the low-rankness of X into consider-
ation. In [12], a two-stage network based on unsupervised adaption
learning is proposed to learn priors of X while estimating the un-
known spatial degradation.

3. THE PROPOSED METHOD

Considering the HSI super-resolution problem defined by the un-
constrained objective function (2), we propose to jointly consider
the super-resolution from the physical model, i.e., the first two terms
in (2), and the data-driven prior information denoted by X̃. In this
work, a prior image from the output of an CNN is used to enhance the

physical model result via φ(X) by reducing the difference between
the optimization variable X and X̃ in spectral and spatial gradient
domains respectively. Under this design, the objective function (2)
becomes:

J(X) = ∥Y −XBS∥2F + ∥Z−RX∥2F + φ(X)

with φ(X) = µ∥D(x− x̃)∥2 + ν∥E(x− x̃)∥2

and X̃ = CNN(Y,Z)

(3)

where x ∈ RBN and x̃ ∈ RBN denote the vectors obtained by
stacking the columns of the matrices X and X̃, respectively and
CNN denotes a trained CNN with the inputs Y and Z to produce
X̃. The first two terms of J(X) guarantee that the candidate solu-
tion is consistent with the degradation model (1). The last term of
J(X) are regularization terms used to promote prescribed proper-
ties, with positive hyper-parameters µ and ν. These two properties
consist of smooth error maps along the spatial and spectral dimen-
sions, obtained with matrices D and E defined as follows.

Matrix D can be designed by choosing first a convolution ker-
nel D. We consider the Laplacian filter Dℓ for each channel ℓ: 0 −1 0

−1 4 −1
0 −1 0

 . (4)

We construct an N ×N block-Toeplitz matrix Dℓ with N Toeplitz
blocks; see [2] for details. Imposing periodic boundary conditions on
Dℓ, it can be reformulated as a block circulant matrix with circulant
blocks, a structure denoted as circulant-block-circulant (CBC). This
property allows to diagonalize Dℓ with 2D Fourier transforms. This
leads to matrix D in (3) with block-diagonal structure:

D =


D1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 DB

 . (5)

Matrix E cannot be block-diagonal since it operates across chan-
nels. A typical choice is to penalize the variation between two adja-
cent channels with a first-order derivative filter E0 = [1 − 1] along
the spectral dimension. The convolution matrix, of size (B−1)×B,
is then given by:

E0 =


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −1 1

 . (6)

This yields:
E = E0 ⊗ IN (7)

where ⊗ denotes the Kronecker product of two matrices and IN is
the N × N identity matrix. Although D and E are large matrices
of size BN ×BN , they are not explicitly stored or used in practice.
As can be seen in Subsection 4.3, ∥D(x−x̃)∥2 and ∥E(x−x̃)∥2 are
actually computed in an efficient manner with Fourier transforms.

4. NUMERICAL OPTIMIZATION

We shall now introduce the algorithm to estimate X by minimizing
the objective function (3). First, we use a variable splitting tech-
nique, i.e., the Half Quadratic Splitting (HQS) [16] algorithm, to de-
compose the optimization problem into iterative sub-problems. One



Algorithm 1 Solving the Sylvester equation w.r.t. Xk+1

Input: Y, Z, B, S, R, Vk, ρ.
Output: Xk+1.

Initialize C1,C2,C3 via (13)
Compute the eigen-decomposition of B as FDFH

D = D(1s ⊗ In)
Compute the eigen-decomposition of C1 as C1 = QΛQ−1

C3 = Q−1C3F
Compute auxiliary matrix X channel by channel
for ℓ = 1 to B do

Xℓ = λ−1
ℓ (C3)i − λ−1

ℓ (C3)kD(λℓsIn +
s∑

t=1

D2
t )D

H

end for
Xk+1 = QXFH

sub-problem related to data fidelity terms is solved based on a fast
Sylvester analytical solver. Another sub-problem involving regular-
izers is solved efficiently using 2D discrete Fourier transform.

4.1. Variable splitting based on HQS
HQS is employed to decouple the data fidelity terms and the regu-
larization terms in (3). By introducing an auxiliary variable V ∈
RB×N , minimization of (3) can be reformulated as:

X̂ = min
X

∥Y −XBS∥2F + ∥Z−RX∥2F + µ∥D(v − x̃)∥2

+ ν∥E(v − x̃)∥2 s.t. V = X.
(8)

where v ∈ RBN denote the vector obtained by stacking the columns
of the matrice V. The augmented Lagrangian function is given by:

Lρ(X,V) = ∥Y −XBS∥2F + ∥Z−RX∥2F + ρ∥X−V∥2F
+ ν∥E(v − x̃)∥2 + µ∥D(v − x̃)∥2

(9)
where ρ is a positive penalty parameter. HQS method then mini-
mizes (9) via the following steps:

Xk+1 = min
X

∥Y−XBS∥2F +∥Z−RX∥2F +ρ∥X−Vk∥2F (10)

vk+1 = min
v

ρ∥xk+1−v∥2+µ∥D(v−x̃)∥2+ν∥E(v−x̃)∥2 (11)

We can observe that the fidelity terms and the regularization terms
are decoupled in the two sub-problems (10) and (11). Now we
can address the above minimization problems in an efficient manner
by iteratively minimizing with respect to X and v, independently.
These two steps are as follows.

4.2. Optimization w.r.t. X
Let us assume that the blurring matrix B has a CBC structure.

Under this widely accepted assumption, matrix B can be decom-
posed as follows: B = FDFH with F ∈ RN×N the DFT matrix,
D ∈ RN×N a diagonal matrix, and H the conjugate transpose.

To solve sub-problem (10), we set the gradient of the objective
function (10) w.r.t. X to zero. Thus, Xk+1 is the solution of the
Sylvester equation:

C1Xk+1 +Xk+1C2 = C3 (12)

where

C1 = RTR+ µIB

C2 = (BS)(BS)T

C3 = RTZ+Y(BS)T + ρVk

(13)

Algorithm 2 HSI super-resolution accounting for spectral-spatial
gradient deviation

Input: Y, Z, B, S, R, X̃, µ, ν, ρ
Output: X̂

Initialize V0 = X̃, k = 0, µ′ = µ/ρ, ν′ = ν/ρ
while stopping criterion is not met and k < K do

Update Xk+1 via Algorithm 1
For ℓ = 1, . . . , B, compute 2D DFTs of data Xk+1,ℓ and X̃ℓ

For each f , compute V ℓ(f) using (18) and (19)
For ℓ = 1, . . . , B, compute vk+1,ℓ from V ℓ via inverse 2D
DFTs
k = k + 1

end while
X̂ = XK

and IB is the identity matrix of size B ×B.
According to the conclusion in [17], the Sylvester equation

in (12) has a unique solution when an arbitrary sum of the eigenval-
ues of C1 and C2 is not equal to zero. Matrix C1 is positive-definite
since RTR and IB are both positive-definite matrices, and C2 is
positive semi-definite. Thus, any sum of the eigenvalues of C1

and C2 is larger than zero, ensuring the uniqueness of the solution
of (12). For a fast algorithm solving (12), the interested reader can
refer to [18]. The steps are summarized in Algorithm 1.

4.3. Optimization w.r.t. v
Following [2] and recalling the notation system (X ,X,x) for other
images as described at the end of Section 1, we can rewrite the ob-
jective function in (11) in 3D image domain with a sum running over
spectral channels:

min
V

B∑
ℓ=1

(
ρ∥Xk+1,ℓ − Vℓ∥2F + µ∥Dℓ∗2D(Vℓ − X̃ℓ)∥2F

+ ν∥[E0∗1D(V − X̃ )]ℓ∥2F
) (14)

The operator ∗2D denotes 2D convolution in the spatial domain
while ∗1D represents 1D convolution across spectral channels. Us-
ing L×W 2D DFT in the spatial domain, and denoting the Fourier
transformed quantities with underlined symbols of the spatial fre-
quency variable f , Plancherel theorem allows to rewrite (14) as:

min
V

B∑
ℓ=1

(
ρ∥X k+1,ℓ − V ℓ∥

2
F + µ∥D ℓ ⊙ (V ℓ − X̃ ℓ)∥

2
F

+ ν∥[E0∗1D(V − X̃ )]ℓ∥2F
) (15)

with ⊙ the Hadamard product. Given a channel ℓ, [E0∗1D(V −X̃ )]ℓ
is a sum of images (V − X̃ )ℓ′ weighted by the coefficients in E0. As
the DFT is not calculated across channels, [E0∗1D(V − X̃ )]ℓ is also
a sum of images (V − X̃ )ℓ′ with the same coefficients.

Since the convolution in E0∗1D(V−X̃ ) is performed in the spec-
tral channel domain, the minimization problem (15) can be separated
into independent minimisation sub-problems w.r.t. each spatial fre-
quency f . The optimization problem in (11) can be decomposed into
a set of independent least square problems, each corresponding to a
point f in the spatial frequency domain:

min
vf

∥xk+1,f −vf∥2+µ′∥∆D(f)(vf − x̃f )∥2+ν′∥E0(vf − x̃f )∥2

(16)



Table 1. Averaged RMSE, PSNR, SAM, ERGAS and SSIM of different methods on the CAVE and Harvard data sets.

Methods
CAVE data set Harvard data set

RMSE PSNR ERGAS SAM SSIM RMSE PSNR ERGAS SAM SSIM

UAL 1.854 44.656 0.196 4.33 0.9910 1.833 45.807 0.323 3.58 0.9832
UAL + Ours 1.587 45.939 0.171 4.08 0.9917 1.784 46.034 0.316 3.54 0.9833

NSSR 2.236 43.439 0.244 5.22 0.9849 1.874 45.540 0.363 3.73 0.9821
NSSR + Ours 2.068 44.044 0.230 5.19 0.9854 1.844 45.649 0.357 3.69 0.9822

LTTR 2.300 43.277 0.249 5.50 0.9848 1.914 45.251 0.375 3.81 0.9813
LTTR + Ours 2.235 43.613 0.243 5.27 0.9851 1.887 45.392 0.374 3.77 0.9915

with µ′ = µ/ρ and ν′ = ν/ρ. The complex vectors vf , x̃f ,xk+1,f

and the complex diagonal matrix ∆D are defined as follows:

vf = {V ℓ(f), ℓ = 1, . . . , B}

x̃f = {X̃ ℓ(f), ℓ = 1, . . . , B}
xk+1,f = {X k+1,ℓ(f), ℓ = 1, . . . , B}
∆D(f) = diag {D ℓ(f), ℓ = 1, . . . , B}

(17)

For each f , the solution of (16) can be computed as:

vf = Tf
−1(xk+1,f + µ′∆D(f)∗∆D(f)x̃f + ν′E∗

0E0x̃f ) (18)

where ∗ denotes the complex conjugate and Tf is the real tri-
diagonal matrix of size B ×B given by:

Tf = (IB + µ′∆D(f)∗∆D(f) + ν′E∗
0E0) (19)

Finally, we can obtain vk+1 by separately calculating the inverse 2D
DFT of each V ℓ with ℓ = 1, . . . , B. This procedure is summarized
in Algorithm 2.

5. EXPERIMENTS

We shall now validate the proposed strategy with experimental re-
sults. The code is made available at github.com/xiuheng-wang.

Two public HSI data sets, namely, the CAVE data set [19] and
the Harvard data set [20], were used for our experiments. The CAVE
data set is composed of 32 HSIs with a spatial dimension 512 ×
512, and 31 channels in the spectral domain, covering the visible
spectrum from 400 nm to 700 nm. The Harvard data set contains 50
HSIs consisting of 1392× 1040 pixels in the spatial domain, and 31
channels ranging from 420 nm to 720 nm. For the Harvard data set,
the top left 1024× 1024 pixels were cropped and extracted.

The HSIs of the two data sets were scaled to range [0, 1] and
served as the ground truth for X. The LR HSI Y was generated
according to (1) where B is a uniform blurring operator over non-
overlapping blocks of size 32× 32, and S is a down-sampling oper-
ator with the down-sampling factor s = 32. The HR RGB Z image
was obtained with (1), with R the response of a Nikon D700 camera.

We used a state-of-the-art deep learning method UAL described
in [12] to calculate the deep prior X̃ for each X. We set the hyper-
parameters as follows: µ = 0.05, ν = 0.001 in (3), and ρ = 0.001
in (9). The number of iterations K in Algorithm 2 was set to 20,
which was sufficient to ensure convergence. To assess the quality of
reconstructed images, we considered the following metrics: the root
mean-square error (RMSE), the peak-signal-to-noise-ratio (PSNR),
the spectral angle mapper (SAM) [21], the error of relative global
adimensional synthesis (ERGAS) [22] and the structural similarity

Fig. 2. Reconstructed images and corresponding error maps of two
images from the CAVE data set in the 540 nm band.

(SSIM) [23]. Table 1 reports the performance of the UAL super-
resolution algorithm [12], and of our algorithm which combines the
UAL and the degradation model inversion (Algorithm 2). It can be
observed that our algorithm significantly improved the performance
of the UAL. Figure 2 confirms this observation by showing that our
approach produced smaller reconstruction errors than the UAL.

For comparison purpose, we also considered other state-of-the-
art super-resolution algorithms than the UAL to produce priors X̃:
the NSSR [5] based on sparse decompositions, and the LTTR [6]
based on tensor factorizations. The rational was to show that cou-
pling our approach with these algorithms improves their perfor-
mance as it makes use of the linear degradation model and exploits
the spectral-spatial smoothness of HSIs. Algorithm 2 was setup as
described above. To setup NSSR and LTTR, we used the codes
provided by their authors and fine-tuned all parameters to achieve
the best super-resolution performance. Table 1 confirms that our
approach allowed us to improve the performance of both NSSR and
LTTR. The best performance was however achieved by using, with
our algorithm, the deep priors provided by the UAL.

6. CONCLUSION

In this paper, we introduced an HSI super-resolution method which
makes use of a degradation model in the data-fidelity term of the ob-
jective function and, on the other hand, utilizes the spectral-spatial
gradient deviation of latent HSIs and the output of a convolutional
neural network as a deep prior regularizer. Experiments showed
the performance improvement achieved with this strategy compared
with state-of-the-art methods.
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