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a b s t r a c t

Some system identification problems impose nonnegativity constraints on the parameters to be esti-
mated due to inherent physical characteristics of the unknown system. The nonnegative least-mean-
square (NNLMS) algorithm and its variants allow one to address this problem in an online manner. A
nonnegative least mean fourth (NNLMF) algorithm has been recently proposed to improve the perfor-
mance of these algorithms in cases where the measurement noise is not Gaussian. This paper provides a
first theoretical analysis of the stochastic behavior of the NNLMF algorithm for stationary Gaussian inputs
and slow learning. Simulation results illustrate the accuracy of the proposed analysis.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive filtering algorithms are widely used to address system
identification problems in applications such as adaptive noise
cancellation [1,2], echo cancellation [3,4], active noise control
[5,6], and distributed learning [7,8]. Due to physical characteristics,
some problems require the imposition of nonnegativity con-
straints on the parameters to be estimated in order to avoid un-
interpretable results [9]. Over recent decades, nonnegativity as a
physical constraint has been studied extensively (see, e.g., non-
negative least-squares [10–13] and nonnegative matrix factoriza-
tion [14–18]).

The nonnegative least-mean-square (NNLMS) algorithm was de-
rived in [19] to address online system identification problems subject
to nonnegativity constraints. Its convergence behavior was analyzed
in [19,20]. The NNLMS algorithm is a fixed-point iteration scheme
based on the Karush–Kuhn–Tucker (KKT) optimality conditions. The
NNLMS algorithm updates the parameter estimates from streaming
data at each time instant and is suitable for online system identifi-
cation. Variants of the NNLMS algorithm were proposed in [21,22] to

address specific robustness and convergence issues.
In certain practical contexts, it has been shown that adaptive

algorithms with weight updates based on higher-order moments
of the estimation error may have better mean-square error (MSE)
convergence properties than the LMS algorithm [23–27]. This is
the case, for instance, of the least mean fourth (LMF) algorithm,
whose weight update is proportional to the third power of the
estimation error. The LMF algorithm was proposed in [28], where
it was verified that it could outperform the LMS algorithm in the
presence of non-Gaussian measurement noise. This desirable
property has led to a series of studies about the convergence be-
havior of the LMF algorithm and some of its variants [29–40].
Recently, a nonnegative LMF (NNLMF) algorithm was proposed in
[41] to improve the performance of the NNLMS algorithm under
non-Gaussian measurement noise. It was shown in [41] that, when
compared to the NNLMS algorithm, the NNLMF algorithm can lead
to faster convergence speed for equivalent steady-state perfor-
mance or improved steady-state performance for the same con-
vergence speed. The results shown in [41] are exclusively based on
Monte Carlo simulation. Nevertheless, they clearly show that there
is a need to better understand the convergence properties of the
NNLMF algorithm. Up to now, there has been no study of the
stochastic behavior of the NNLMF algorithm.

This paper provides a first statistical analysis of the NNLMF
algorithm behavior. We derive an analytical model of the
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algorithm behavior for slow learning and Gaussian inputs. Based
on statistical assumptions typical in the analysis of adaptive al-
gorithms, we derive recursive analytical expressions for the mean-
weight behavior and for the excess MSE. The high-order non-
linearities imposed on the weight update by the third error power
and by the non-negativity constraints result in a difficult mathe-
matical analysis, requiring novel approximations not usually em-
ployed in adaptive filter analyses. Monte Carlo simulation results
illustrate the accuracy of the analysis. It is known that the study of
the stability of the LMF algorithm is relatively complex [30,31].
This complexity increases for the NNLMF algorithm. A theoretical
stability study could not be accommodated in this work, and is left
for future studies.

The paper is organized as follows. In Section 2, we describe the
system model and provide an overview of the NNLMS and NNLMF
algorithms. In Section 3, we introduce statistical assumptions used
in the analysis of the NNLMF algorithm. The mean and mean-
square analyses are performed in Sections 4 and 5, respectively.
Simulation results are used to validate the analysis in Section 6.
Finally, Section 7 concludes the paper.

In the sequel, normal font letters are used for scalars, boldface
lowercase letters for vectors, and boldface uppercase letters for
matrices. Furthermore, (·)⊤ denotes vector or matrix transposition,

{·}E denotes statistical expectation, ∥·∥ is the ℓ2-norm of a vector, ○
denotes the Hadamard product, {·}Tr computes the trace of a
matrix, αD represents a diagonal matrix whose main diagonal is
the vector α, 1 is the all-one column vector, and I is the identity
matrix.

2. Nonnegative system identification

Online system identification aims at estimating the system
impulse response from observations of both the input signal u(n)
and the desired response d(n), as shown in Fig. 1. The desired re-
sponse is assumed to be modeled by

( ) = ( ) + ( ) ( )⁎⊤d n n z nw u 1

where ( ) = [ ( ) ( − ) … ( − + )]⊤n u n u n u n Mu , 1 , , 1 is the input vector
consisting of the M most recent input samples,

= [ … ]⁎ ⁎ ⁎
−

⁎ ⊤w w ww , , , M0 1 1 denotes the true weight vector of the un-
known system, and z(n) represents the measurement noise. For
nonnegative system identification, nonnegativity constraints are
imposed on the estimated weights ∈ { … − }w i M, 0, 1, , 1i , lead-
ing to the constrained optimization problem [9]

= ( )

≥ ( )

J

w

w warg min

subject to 0 2i

w

o

where w is the free-variable weight vector with wi being its ith
entry, ( )J w is a differentiable and strictly convex objective function

of w, and wo represents the solution to the above constrained
optimization problem.

Based on the Karush–Kuhn–Tucker conditions, the authors in
[19] derived a fixed-point iteration scheme to address the opti-
mization problem (2). Using the mean square error (MSE) cost
function

{ }[ ( )] = [ ( ) − ( ) ( )] ( )⊤J n d n n nw w uE 3
2

and a stochastic approximation yielded the NNLMS algorithm
update equation

μ( + ) = ( ) + ( ) ( ) ( )( )n n n e nw w D w1 4nu

where ( )nw denotes the weight vector of the adaptive filter at
instant n, ( ) = ( ) − ( ) ( )⊤e n d n n nw u is the error signal, and μ is a
positive step-size.

To improve the convergence performance of the adaptive filter
for non-Gaussian measurement noise, the authors in [41] pro-
posed to replace the MSE criterion with the mean fourth error
(MFE) criterion

{ }[ ( )] = [ ( ) − ( ) ( )] ( )
⊤J n d n n nw w uE . 5

4

This has led to the NNLMF algorithm update equation

μ( + ) = ( ) + ( ) ( ) ( )( )n n n e nw w D w1 6nu
3

The entry-wise form of (6) is

μ( + ) = ( ) + ( − ) ( ) ( ) ( )w n w n u n i w n e n1 7i i i
3

where ( )w ni is the ith entry of the weight vector ( )nw . The update
term of (7) is highly nonlinear in ( )nw , leading to a more complex
behavior than that of the already studied LMF algorithm. In the
following we study the stochastic behavior of (7).

3. Statistical assumptions

The analysis of any adaptive filtering algorithm requires the use
of statistical assumptions for feasibility. The analysis is based on
the study of the behavior of the weight-error vector, defined as

˜ ( ) = ( ) − ( )⁎n nw w w 8

and we employ the following frequently used statistical
assumptions:

A1: The input signal u(n) is stationary, zero-mean, and
Gaussian.

A2: The input vector ( )nu and the weight vector ( )nw are
independent.

A3: The measurement noise z(n) is zero-mean, i.i.d., and in-
dependent of any other signal. Moreover, it has an even probability
density function so that all odd moments of z(n) are equal to zero.

A4: The statistical dependence between ˜ ( ) ˜ ( )⊤n nw w and ˜ ( )nw
can be neglected.

A5: The weight-error vector ˜ ( )nw and [ ( ) ˜ ( )]⊤ n nu w 2 are statisti-
cally independent.

Assumption A2 is the well-known independence assumption,
which has been successfully used in the analysis of many adaptive
algorithms, including the LMF algorithm [29]. Assumption A3 is
often used in the analysis of higher-order moments in adaptive
algorithms, and is practically reasonable. Assumption A4 is accu-
rate for slow learning, as in this case weight fluctuations tend to be
much smaller than their mean. For faster learning, this assumption
becomes less valid, but has been found to provide an approx-
imation with acceptable impact on the model accuracy. Assump-
tion A5 is reasonable for a large number of taps. Simulation results
will show that the models obtained using these assumptions can

Fig. 1. Block diagram of system identification using an adaptive filter, which is
widely used in many practical applications.
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accurately predict the behavior of the NNLMF algorithm.

4. Mean weight analysis

The ith entry of the weight-error vector (8) is given by

˜ ( ) = ( ) − ( )⁎w n w n w . 9i i i

Subtracting ⁎wi from both sides of (7), we have

μ˜ ( + ) = ˜ ( ) + ( − ) ( ) ( ) ( )w n w n u n i w n e n1 . 10i i i
3

Substituting (9) into (10) yields

{ }μ˜ ( + ) = ˜ ( ) + ( − ) [ ˜ ( ) + ] ( ) ( ) ( )⁎w n w n u n i w n w e n e n1 . 11i i i i
2

By employing (1) and (9), the estimation error e(n) can be
equivalently expressed in terms of ˜ ( )nw as

( ) = ( ) + ( ) − ( ) ( ) = ( ) − ˜ ( ) ( ) ( )⁎⊤ ⊤ ⊤e n z n n n n z n n nw u w u w u . 12

From (12) the term [ ˜ ( ) + ] ( )⁎w n w e ni i
3 in (11) is of fourth-order in

˜ ( )w ni . This makes the analysis significantly more difficult than that
of the LMS or LMF algorithm.

To make the problem tractable, we linearize the nonlinear term
within brackets in (11):

[ ˜ ( )] = [ + ˜ ( )] ( ) ( )⁎f w n w w n e n 13i i i
2

via a first-order Taylor expansion as done in [21]. Taking the de-
rivative of [ ˜ ( )]f w ni with respect to ˜ ( )w ni , we have

∂ [ ˜ ( )]
∂ ˜ ( ) = ( ) − ( ) ( − )[ + ˜ ( )]

( )
⁎f w n

w n
e n e n u n i w w n2 .

14
i

i
i i

2

Considering that ˜ ( )w ni fluctuates around { ˜ ( )}w nE i , we approximate
the high-order stochastic term [ ˜ ( )]f w ni at time instant n by its first-
order Taylor expansion about { ˜ ( )}w nE i as

[ ˜ ( )] ≃ [ { ˜ ( )}] + ∂ [ ˜ ( )]
∂ ˜ ( ) [ ˜ ( ) − { ˜ ( )}]

= ( ) + ( ) ( − )[ + { ˜ ( )}] { ˜ ( )}
+ { ( ) − ( ) ( − )[ + { ˜ ( )}]} ˜ ( ) ( )

{ ˜ ( )}
⁎ ⁎

⁎

f w n f w n
f w n

w n
w n w n

e n w e n u n i w w n w n

e n e n u n i w w n w n

E E

2 E E

2 E 15

i i
i

i w n
i i

i i i i i i

i i i i i

E

E,
2

E,

E,
2

E,

i

where ( ) = ( )| ˜ ( )e n e ni nwE, iE,
and is expressed as

( ) = ( ) − ˜ ( ) ( ) = ( ) − ( − )[ { ˜ ( )} − ˜ ( )] ( )⊤e n z n n n e n u n i w n w nw u E 16i i i iE, E,

with

˜ ( ) = [ ˜ ( ) … ˜ ( ) { ˜ ( )} ˜ ( ) … ˜ ( )] ( )− + −
⊤n w n w n w n w n w nw , , , E , , , . 17i i i i ME, 0 1 1 1

Combining (11), (13), and (15) yields

μ˜ ( + ) = ˜ ( ) + ( − )[ ( ) + ( ) ˜ ( )] ( ) ( )w n w n u n i x n s n w n e n1 18i i i i i

where

( ) = ( ) + ( ) ( − )[ + { ˜ ( )}] { ˜ ( )} ( )⁎ ⁎x n e n w e n u n i w w n w n2 E E 19i i i i i i iE,
2

E,

( ) = ( ) − ( ) ( − )[ + { ˜ ( )}] ( )⁎s n e n e n u n i w w n2 E . 20i i i i iE,
2

E,

Expressions (19) and (20) can be easily written in vector form as
follows:

( ) = [ ( ) ( ) … ( )]
= + [ + { ˜ ( )}] ( )

−
⊤

( )
⁎

( ) ( ) { ˜ ( )}
⁎

n x n x n x n

n

x

D w D D D w w

, , ,

2 E 21

M

n n n ne e u w

0 1 1
2

EE E

( ) = [ ( ) ( ) … ( )]
= − [ + { ˜ ( )}] ( )

−
⊤

( ) ( ) ( )
⁎

n s n s n s n

n

s

D 1 D D w w

, , ,

2 E 22

M

n n ne e u

0 1 1
2

E E

where

( ) = [ ( ) ( ) … ( )] = ( )
− [ { ˜ ( )} − ˜ ( )] ( )

−
⊤

( )

n e n e n e n e n

n n

e

1 D w w

, , ,

E . 23

M

nu

E E,0 E,1 E, 1

Thus, we can write (18) in matrix form as

( )

μ
μ μ

μ μ

˜ ( + ) = ˜ ( ) + [ ( ) + ˜ ( )][ ( ) − ˜ ( ) ( )] = ˜ ( )
− [ ( ) + ˜ ( )] ˜ ( ) ( ) + [ ( ) + ˜ ( )]
( ) = ˜ ( ) − ( ) + ( )

( ) ( )
⊤

( ) ( )
⊤

( ) ( )

24

n n n n z n n n n

n n n n n n

z n n n n

w w D x D w w u w

D x D w w u D x D w

w p q

1 n n

n n n n

u s

u s u s

where

( ) = [ ( ) + ˜ ( )] ˜ ( ) ( ) ( )( ) ( )
⊤n n n n np D x D w w u 25n s nu

( ) = [ ( ) + ˜ ( )] ( ) ( )( ) ( )n n n z nq D x D w . 26n s nu

Taking expectations of both sides of (24) yields

μ μ{ ˜ ( + )} = { ˜ ( )} − { ( )} + { ( )} ( )n n n nw w p qE 1 E E E . 27

Next, we need to calculate { ( )}npE and { ( )}nqE to express (27) in
an explicit form. From (25), the ith entry of ( )np can be written as

{
}{ } ( )

( ) = ( − ) ( ) + ( ) ( − )[ + { ˜ ( )}] { ˜ ( )}

+ ( ) − ( ) ( − )[ + { ˜ ( )}] ˜ ( ) ˜ ( ) ( )

⁎ ⁎

⁎ ⊤
28

p n u n i e n w e n u n i w w n w n

e n e n u n i w w n w n n nw u

2 E E

2 E .

i i i i i i i

i i i i i

E,
2

E,

E,
2

E,

We rewrite (28) as

( ) = ( ) + ( ) + ( ) ( )p n p n p n p n 29i i i i,a ,b ,c

where

( ) = ( − ) ( ) ˜ ( ) ( ) ( )⁎ ⊤p n u n i e n w n nw u 30ai i i,a E,
2

( ) = ( − ) ( ) ˜ ( ) ˜ ( ) ( ) ( )⊤p n u n i e n w n n nw u 30bi i i,b E,
2

( )( ) = [ + { ˜ ( )}] ( − ) ( )[ { ˜ ( )} − ˜ ( )] ˜ ( ) ( )⁎ ⊤ 30cp n w w n u n i e n w n w n n nw u2 E E .i i i i i i,c
2

E,

Define ri as the ith column vector of the input vector correlation

matrix { }= ( ) ( )⊤n nR u uE . Using Assumptions A1–A5, it is shown in
Appendices A and B that the expected values of (30a) and (30b)
can be approximated by

{ } { }
{ } { }

{ }
( )σ

{ ( )} = ( − ) ( ) ˜ ( ) ( ) ≃ { ˜ ( )} ˜ ( )

˜ ( ) + ˜ ( )

⁎ ⊤ ⊤

⊤ ⁎ ⊤ ⁎
31

p n u n i e n w n n n n

n w n w

w u R w w

w r w r

E E 3 Tr E E

E E

i i i

i i z i i

,a E,
2

2

{ } { }
{ } { }

{ }
( )σ

{ ( )} = ( − ) ( ) ˜ ( ) ˜ ( ) ( ) ≃ { ˜ ( )} ˜ ( )

˜ ( ) { ˜ ( )} + ˜ ( ) { ˜ ( )}

⊤ ⊤

⊤ ⊤
32

p n u n i e n w n n n n n

n w n n w n

w u R w w

w r w r

E E 3 Tr E E

E E E E

i i i

i i z i i

,b E,
2

2

where { }σ = ( )z nEz
2 2 denotes the variance of the measurement

noise. It is also shown in Appendix A that ˜ ( ) ( )⊤ n nw uiE, can be ap-

proximated by ˜ ( ) ( )⊤ n nw u . Using this approximation in (16) yields

( ) ≃ ( ) − ˜ ( ) ( ) ( )⊤e n z n n nw u . 33iE,

Substituting (33) into (30c), we have
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( )
( ) = [ + { ˜ ( )}] ( − ) ˜ ( ) ( )[ { ˜ ( )} − ˜ ( )] ( )

− [ + { ˜ ( )}] ( − )[ ˜ ( ) ( )] [ { ˜ ( )} − ˜ ( )]

⁎ ⊤

⁎ ⊤ 34

p n w w n u n i n n w n w n z n

w w n u n i n n w n w n

w u

w u

2 E E

2 E E .
i i i i i

i i i i

,c
2

2 2

Then, using Assumptions A2, A3, and A5, the expected value of
(34) becomes

{ }
{ }

{ ( )} = − [ + { ˜ ( )}] ( − )[ ˜ ( ) ( )]

[ { ˜ ( )} − ˜ ( )] = ( )

⁎ ⊤p n w w n u n i n n

w n w n

w uE 2 E E

E E 0 35

i i i

i i

,c
2 2

due to the last expectation. Therefore, we have

{ ( )} = { ( )} + { ( )} ( )p n p n p nE E E . 36i i i,a ,b

Its vector form is consequently given by

{ ( )} = { ( )} + { ( )} ( )n n np p pE E E 37a b

where

{ }{ }
σ

{ ( )} = { ˜ ( )} ˜ ( ) { ˜ ( )}

+ { ˜ ( )} ( )

⊤ ⁎

⁎

n n n n

n

p R w w D R w

D R w

E 3 Tr E E E

E 38z

w

w

a

2

{ }{ }
σ

{ ( )} = { ˜ ( )} ˜ ( ) { ˜ ( )}

+ { ˜ ( )} ( )

⊤
{ ˜ ( )}

{ ˜ ( )}

n n n n

n

p R w w D R w

D R w

E 3 Tr E E E

E . 39

n

z n

w

w

b E

2
E

Therefore, we have

{ }{ }
σ

{ ( )} = { ˜ ( )} ˜ ( ) { ˜ ( )}

+ { ˜ ( )} ( )

⊤
[ + { ˜ ( )}]

[ + { ˜ ( )}]

⁎

⁎

n n n n

n

p R w w D R w

D R w

E 3 Tr E E E

E . 40

n

z n

w w

w w

E

2
E

From (26), we directly find that the ith entry of ( )nq can be written
as

{
}{ }

( ) = ( − ) ( ) + ( ) ( − )[ + { ˜ ( )}] { ˜ ( )}

+ ( ) − ( ) ( − )[ + { ˜ ( )}] ˜ ( ) ( ) ( )

⁎ ⁎

⁎

q n u n i e n w e n u n i w w n w n

e n e n u n i w w n w n z n

2 E E

2 E . 41

i i i i i i i

i i i i i

E,
2

E,

E,
2

E,

Using (16), we rewrite the above equation as

( ) = ( ) + ( ) − ( ) + ( ) ( )q n q n q n q n q n 42i i i i i,a ,b ,c ,d

where

( ) = ( − )[ ( ) − ˜ ( ) ( )] ( ) ( )⊤ ⁎q n u n i z n n n w z nw u 43ai i i,a E,
2

( ) = ( − )[ ( ) − ˜ ( ) ( )] ˜ ( ) ( ) ( )⊤q n u n i z n n n w n z nw u 43bi i i,b E,
2

( ) = [ ( ) − ˜ ( ) ( )] ( − )[ + { ˜ ( )}] ˜ ( ) ( ) ( )⊤ ⁎q n z n n n u n i w w n w n z nw u2 E 43ci i i i i,c E,
2

( ) = [ ( ) − ˜ ( ) ( )]

( − )[ + { ˜ ( )}] { ˜ ( )} ( ) ( )

⊤

⁎

q n z n n n

u n i w w n w n z n

w u2

E E . 43d

i i

i i i

,d E,

2

Since the mean weight behavior is not usually sensitive in the
approximation { ˜ ( ) ˜ ( )} ≃ { ˜ ( )} { ˜ ( )} ∀w n w n w n w n i jE E E , ,i j i j (see [19,21]),
using this approximation as well as Assumptions A1–A4, we have

{ }
{ }σ

{ ( )} ≃ − ( ) ( − ) ˜ ( ) ( )

= − ˜ ( ) ( )

⊤ ⁎

⁎ ⊤

q n z n u n i n n w

w n

w u

w r

E 2E

2 E 44a

i i i

z i i

,a
2

E,

2

{ }
{ }σ

{ ( )} ≃ − ( ) ( − ) ˜ ( ) ( ) { ˜ ( )}

= − ˜ ( ) ( )

⊤

⁎ ⊤

q n z n u n i n n w n

w n

w u

w r

E 2E E

2 E 44b

i i i

z i i

,b
2

E,

2

{ }σ{ ( )} ≃ ( − )[ + { ˜ ( )}] { ˜ ( )} ( )⁎q n u n i w w n w nE 2 E E E 44ci z i i i,c
2 2

{ }σ{ ( )} = ( − )[ + { ˜ ( )}] { ˜ ( )} ( )⁎q n u n i w w n w nE 2 E E E . 44di z i i i,d
2 2

Consequently, (42) leads to

{ }σ

{ ( )} = { ( )} + { ( )} − { ( )} + { ( )}

≃ − [ + { ˜ ( )}] ˜ ( ) ( )⁎ ⊤

q n q n q n q n q n

w w n nw r

E E E E E

2 E E 45

i i i i i

z i i i

,a ,b ,c ,d

2

which can be written in matrix form as

σ{ ( )} = − { ˜ ( )} ( )[ + { ˜ ( )}]⁎n nq D R wE 2 E . 46z nw w
2

E

Finally, using (40) and (46) in (27), we obtain

{ }{ } ( )

μσ

μ

{ ˜ ( + )} = { ˜ ( )} − { ˜ ( )}

− { ˜ ( )} ˜ ( ) { ˜ ( )}
[ ⁎+ { ˜ ( )}]

⊤
[ ⁎+ { ˜ ( )}] 47

n n n

n n n

w w D R w

R w w D R w

E 1 E 3 E

3 Tr E E E .

z n

n

w w

w w

2
E

E

Expression (47) predicts the mean weight behavior of the NNLMF
algorithm, and will be used in the next section to compute the
second-order moment.

In the case that the input to the system is zero-mean white
noise, i.e., σ=R Iu

2 with { }σ = ( )u nEu
2 2 , (47) reduces to

{ }

{ }

{ }
μσ σ

μσ

μσ σ

μσ

{ ˜ ( + )} = { ˜ ( )} − { ˜ ( )}

− { ˜ ( )} ˜ ( )

{ ˜ ( )} = { ˜ ( )}
− [ + { ˜ ( )}]

− ∥ ˜ ( ) ∥ [ + { ˜ ( )}] ( )

[ + { ˜ ( )}]
⊤

[ + { ˜ ( )}]

{ ˜ ( )}
⁎

{ ˜ ( )}
⁎

⁎

⁎

n n n

n n

n n

n

n n

w w D w

w w

D w w

D w w

w D w w

E 1 E 3 E

3 Tr E E

E E

3 E

3 E E 48

z u n

u

n

z u n

u n

w w

w w

w

w

2 2
E

4

E

2 2
E

4 2
E

which can be expressed in entry-wise form as

∑
μσ σ

μσ

{ ˜ ( + )} = { ˜ ( )} − { ˜ ( )}[ + { ˜ ( )}]

− { ˜ ( )} { ˜ ( )}[ + { ˜ ( )}]
( )

⁎

=

−
⁎

w n w n w n w w n

w n w n w w n

E 1 E 3 E E

3 E E E .
49

i i z u i i i

u
m

M

m i i i

2 2

4

0

1
2

Using the equality { ˜ ( + )} = { ˜ ( )}w n w nE 1 Ei i as → ∞n , (49) becomes

∑μσ σ μσ{ ˜ (∞)}[ + { ˜ (∞)}] + { ˜ (∞)} =
( )

⁎

=

−

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

w w w wE E 3 3 E 0.
50

i i i z u u
m

M

m
2 2 4

0

1
2

Solving (50), we obtain { ˜ (∞)} =wE 0i or { ˜ (∞)} = − ⁎w wE i i , which
means that = ⁎w wi i

o and =w 0i
o are the two fixed points of the

mean weight behavior of the NNLMF algorithm, where wi
o is the

ith entry of wo. This result is consistent with that of the NNLMS
algorithm.

5. Second-order moment analysis

Let { }( ) = ˜ ( ) ˜ ( )⊤n n nK w wE be the covariance matrix of the
weight-error vector. Under certain simplifying assumptions [2],
the excess mean-square error (EMSE) is given by

ξ( ) = { ( )} ( )n nRKTr . 51

In the previous section, we used the approximation

{ }( ) ≃ { ˜ ( )} ˜ ( )⊤n n nK w wE E . This approximation is accurate enough
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for the analysis of the mean weight behavior. However, the effect
of the second-order moments of the weight-error vector on the
EMSE behavior is more significant [19]. Therefore, we need a more
accurate expression for ( )nK in order to characterize the EMSE.

Subtracting ⁎w from both sides of (6) yields

μ˜ ( + ) = ˜ ( ) + ( ) ( ) ( )( )n n n e nw w D w1 . 52nu
3

Post-multiplying (52) by its transpose, considering the equality
( ) = ( )( ) ( )n nD w D un nu w , and taking the expected value, we have

μ μΦ Φ( + ) = ( ) + ( ) + ( ) ( )n n n nK K1 531
2

2

where

{ }Φ ( ) = ( )[ ˜ ( ) ( ) + ( ) ˜ ( )] ( )
⊤

( ) ( )
⊤n e n n n n nw u D D u wE 54n nw w1

3

{ }Φ ( ) = ( ) ( ) ( ) ( )( )
⊤

( )n e n n nD u u DE . 55n nw w2
6

By using (12), ( )e n3 and ( )e n6 can be expanded, respectively, as
follows:

( ) = ( ) − ( ) ( ) ˜ ( ) + ( )[ ( ) ˜ ( )]
− [ ( ) ˜ ( )] ( )

⊤ ⊤

⊤
e n z n z n n n z n n n

n n

u w u w

u w

3 3

56

3 3 2 2

3

( )
( ) = ( ) − ( ) ( ) ˜ ( ) + ( )[ ( ) ˜ ( )] − ( )[ ( ) ˜ ( )]

+ ( )[ ( ) ˜ ( )] − ( )[ ( ) ˜ ( )] + [ ( ) ˜ ( )]

⊤ ⊤ ⊤

⊤ ⊤ ⊤ 57
e n z n z n n n z n n n z n n n

z n n n z n n n n n

u w u w u w

u w u w u w

6 15 20

15 6 .

6 6 5 4 2 3 3

2 4 5 6

Using (56) in (54) with Assumption A3, we have

{
}

{ }

σ σ

Φ

Θ Θ Θ Θ

( ) = − ( ) ( ) ˜ ( ) − [ ( ) ˜ ( )]

× [ ˜ ( ) ( ) + ( ) ˜ ( )]

= − ( ) − ( ) + ( ) + ( ) ( )

⊤ ⊤

⊤
( ) ( )

⊤

⊤ ⊤

n E z n n n n n

n n n n

n n n n

u w u w

w u D D u w

3

3 3 58

n n

z z

w w

1
2 3

2
1

2
1 2 2

where

{ }Θ ( ) = ˜ ( ) ˜ ( ) ( ) ( ) ( )⊤ ⊤
( )n n n n nw w u u DE 59nw1

{ }Θ ( ) = − ( ) ( ) ˜ ( ) ˜ ( ) ( ) ( ) ˜ ( ) ˜ ( ) ( )( )
⊤ ⊤ ⊤ ⊤n n n n n n n n nD u u w w u u w wE . 60nw2

Similarly, using (57) in (55) with Assumption A3, we have

{ } { } σΦ Θ Θ Θ Θ( ) = ( ) ( ) + ( ) ( ) + ( ) + ( ) ( )n z n n z n n n nE 15E 15 61z2
6

3
4

4
2

5 6

where

{ }Θ ( ) = ( ) ( ) ( )( )
⊤

( )n n nD u u DE 62n nw w3

{ }Θ ( ) = [ ( ) ˜ ( )] ( ) ( ) ( )⊤
( )

⊤
( )n n n n nu w D u u DE 63n nw w4

2

{ }Θ ( ) = [ ( ) ˜ ( )] ( ) ( ) ( )
⊤

( )
⊤

( )n n n n nu w D u u DE 64n nw w5
4

{ }Θ ( ) = [ ( ) ˜ ( )] ( ) ( ) ( )
⊤

( )
⊤

( )n n n n nu w D u u DE . 65n nw w6
6

In the following, we express Θ ( ) = …n i, 1, 2, , 6i , in terms of R and
( )nK .

5.1. Θ ( )n1

Using (8) in (59), and considering Assumptions A2 and A4, we

can approximate (59) as

{ }
{ }

Θ ( ) = ˜ ( ) ˜ ( ) ( ) ( )

+ ˜ ( ) ˜ ( ) ( ) ( ) ≃ ( )

+ ( ) = ( ) [ + ] ( )

⊤ ⊤
˜ ( )

⊤ ⊤

{ ˜ ( )} { ˜ ( )}

⁎

⁎ ⁎

n n n n n

n n n n n

n n

w w u u D

w w u u D K

RD K RD K R D D

E

E

. 66

n

n n

w

w

w w w w

1

E E

5.2. Θ ( )n2

Likewise, using (8) in (60), we have

Θ Ξ Ξ
Ξ Ξ

( ) = − { ( )} − { ( )}
≃ − { ( )} − { ( )} ( )

˜ ( )

{ ˜ ( )}

⁎

⁎

n n n

n n

D D

D D

E E

E E 67

n

n

w w

w w

2

E

where

Ξ( ) = ( ) ( ) ˜ ( ) ˜ ( ) ( ) ( ) ˜ ( ) ˜ ( ) ( )⊤ ⊤ ⊤ ⊤n n n n n n n n nu u w w u u w w . 68

Notice that in the second line of (67) we neglect the correlation
between ˜ ( )D nw and Ξ( )n . This approximation is reasonable as Ξ( )n is
a function of fourth-order products of elements of ˜ ( )nw , whose
values can be obtained from infinitely many different vectors ˜ ( )nw .
In [29], the expected value of Ξ( )n for zero-mean Gaussian inputs
has been approximated using Assumptions A4 and A5 as

Ξ{ ( )} ≃ { ( )} ( ) ( )n n nRK RKE 3 Tr . 69

Using (69) in (67) yields

Θ ( ) ≃ − { ( )}[ + ] ( ) ( ){ ˜ ( )} ⁎n n nRK D D RK3 Tr . 70nw w2 E

5.3. Θ ( )n3

Substituting (8) into (62) and using Assumption A3, we have

{ }
{ } { }
{ }

Θ ( ) = ( ) ( )

+ ( ) ( ) ( ) + ( ) ( ) ( )

+ ( ) ( ) ( )

˜ ( )
⊤

˜ ( )

˜
⊤ ⊤

˜
⊤

⁎ ⁎

⁎ ⁎

n n n

n n n n n n

n n

D u u D

D u u D D u u D

D u u D

E

E E

E . 71

n nw w

w w w w

w w

3

It was shown in [19] that { }˜ ( ) ˜ ( ) ≃ ○ ( )( )
⊤

( )n n nD w w D R KE n nu u . Since

( ) ( ) = ˜ ( ) ˜ ( ) ( )˜ ( )
⊤

˜ ( ) ( )
⊤

( )n n n nD u u D D w w D 72n n n nw w u u

we can approximate (71) as

Θ ( ) ≃ ○ ( ) + + + ( ){ ˜ ( )} { ˜ ( )}⁎ ⁎ ⁎ ⁎n nR K D RD D RD D RD . 73n nw w w w w w3 E E
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Fig. 2. Unknown system impulse response ⁎w (○) and initial weight vector ( )w 0
(◊) drawn from the uniform distribution ([ ])U 0; 1 .
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5.4. Θ ( )n4

Substituting (8) into (63) and using Assumption A3, (63) can be
written as

{ }
{ }
{

}

Θ

Θ Θ Θ Θ

( ) = [ ( ) ˜ ( )] ( ) ( )

= [ ( ) ˜ ( )] ( ) ( )

= [ ˜ ( ) + ] ( ) ˜ ( ) ˜ ( ) ( )

[ ˜ ( ) + ]

= { ( ) + ( ) + ( ) + ( )} ( )

⊤
( )

⊤
( )

⊤
( )

⊤
( )

( )
⁎ ⊤ ⊤

⁎⊤
( )

n n n n n

n n n n

n n n n n

n

n n n n

u w D u u D

u w D w w D

D w w u w w u

w w D

15E

15E

15E

15 74

n n

n n

n

n

w w

u u

u

u

4
2

2

4.1 4.2 4.3 4.4

where

{ }Θ ( ) = ( ) ˜ ( ) ˜ ( ) ( ) ( )( )
⁎ ⊤ ⊤ ⁎⊤

( )n n n n nD w u w w u w DE 75an nu u4.1

{ }Θ ( ) = ( ) ˜ ( ) ( ) ˜ ( ) ˜ ( ) ( )( )
⁎ ⊤ ⊤ ⊤

( )n n n n n nD w u w u w w DE 75bn nu u4.2

{ }Θ ( ) = ˜ ( ) ˜ ( ) ( ) ˜ ( ) ( ) ( )( )
⊤ ⊤ ⁎⊤

( )n n n n n nD w w u w u w DE 75cn nu u4.3

{ }Θ ( ) = ˜ ( ) ˜ ( ) ( ) ( ) ˜ ( ) ˜ ( ) ( )( )
⊤ ⊤ ⊤

( )n n n n n n nD w w u u w w DE . 75dn nu u4.4

We find that the above quantities, Θ ( )n4.1 – Θ ( )n4.4 , correspond to
[19, Eqs. (45)–(48)], respectively, which have been computed un-
der Assumptions A1–A5. Therefore, the results obtained in [19] can
be used directly here, yielding

{ }Θ ( ) ≃ ( ) + { ( )} ( )⁎ ⁎n n nD RK R RK R D2 Tr 76aw w4.1

{ }Θ ( ) ≃ ( ) + { ( )} ( ){ ˜ ( )}⁎n n nD RK R RK R D2 Tr 76bnw w4.2 E

{ }Θ ( ) ≃ ( ) + { ( )} ( ){ ˜ ( )} ⁎n n nD RK R RK R D2 Tr 76cnw w4.3 E

{ }Θ ( ) ≃ ( ) + { ( )} ○ ( ) ( )n n n nRK R RK R K2 Tr . 76d4.4
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Fig. 3. Plots of ( ) = { ˜ ( ) ˜ ( ) ˜ ( )}f i j k w n w n w n, , E i j k and ( ) = { ˜ ( ) ˜ ( )} { ˜ ( )}g i j k w n w n w n, , E Ei j k in the case where the input is a correlated signal and the noise is a uniformly distributed
sequence with μ = × −2 10 5, showing that Assumption A4 is valid for slow learning. (a) Weight indices = =i j k and (b) weight indices ≠ ≠i j k .
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sequence with μ = × −2 10 5, showing that Assumption A5 is valid for slow learning. (a) Positive unknown weights and (b) negative unknown weights.
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Fig. 5. Convergence of the NNLMF mean weights in the case where the input is a white Gaussian signal with μ = × −2 10 5, showing that the theoretical (dotted) and
simulation (solid) curves are perfectly superimposed. (a) Uniform noise and (b) binary noise.
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Fig. 6. Convergence of the NNLMF mean weights in the case where the input is a correlated signal with μ = × −2 10 5, showing that the theoretical (dotted) and simulation
(solid) curves are perfectly superimposed. (a) Uniform noise and (b) binary noise.
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Fig. 7. Convergence of the NNLMF second-order moment in the case where the input is a white Gaussian signal with μ = × −2 10 5, showing that the theoretical (solid) curves
match well with the simulation results (dashed). (a) Uniform noise and (b) binary noise.
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Defining

ϒ( ) = ( ) + { ( )} ( )n n nRK R RK R2 Tr 77

and substituting (76) into (74) leads to

( )Θ ϒ ϒ ϒ ϒ( ) ≃ [ ( ) + ( ) + ( ) + ( )○ ( )]⁎ ⁎ ⁎ { ˜ ( )} { ˜ ( )} ⁎ 78n n n n n nD D D D D D K .n nw w w w w w4 E E

5.5. Θ ( )n5

The term Θ ( )n5 contains higher-order moments of ˜ ( )nw and
( )nu . Computing this term also requires approximations. One ap-

proximation that preserves the second-order moments is to split
the expectation as { }[ ( ) ˜ ( )]⊤ n nu wE 4 { }( ) ( )( )

⊤
( )n nD u u DE n nw w . The in-

tuition behind this approximation is that each element of the
matrix ( ) ( )( )

⊤
( )n nD u u Dn nw w corresponds to only one of the M2 terms

of the sum [ ( ) ˜ ( )]⊤ n nu w 2, which tends to reduce their correlation for
reasonably large M. Moreover, we shall assume that ( ) ˜ ( )⊤ n nu w is
zero-mean Gaussian to simplify the evaluation of the above ex-
pectations. This assumption becomes more valid as M increases
(by the Central Limit theorem) and tends to be reasonable for
practical values of M. Under these assumptions, we have

{ } { } { }
( )

Θ

Θ

( ) ≃ [ ( ) ˜ ( )] ( ) ( ) = ( [ ( ) ˜ ( )] )

( ) = [ { ( )}] [ ○ ( )
+ + + ]

⊤
( )

⊤
( )

⊤

{ ˜ ( )} ⁎ ⁎ { ˜ ( )} ⁎ ⁎ 79

n n n n n n n

n n n

u w D u u D u w

RK R K

D RD D RD D RD

E E 3 E

3 Tr

.

n n

n n

w w

w w w w w w

5
4 2 2

3
2

E E

5.6. Θ ( )n6

The same assumptions used to calculate Θ ( )n5 can be applied to
approximate (65) as

{ } { } { }
( )

Θ

Θ

( ) ≃ [ ( ) ˜ ( )] ( ) ( ) = ( [ ( ) ˜ ( )] )

( ) = [ { ( )}] [ ○ ( )
+ + + ]

⊤
( )

⊤
( )

⊤

{ ˜ ( )} ⁎ ⁎ { ˜ ( )} ⁎ ⁎ 80

n n n n n n n

n n n

u w D u u D u w

RK R K

D RD D RD D RD

E E 15 E

15 Tr
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n n

n n

w w

w w w w w w

6
6 2 3

3
3

E E

5.7. ( )nK

Using Θ ( )n1 through Θ ( )n6 in (58) and (61), we obtain

{ }
σΦ ( ) ≃ − [ + { ( )}]

× ( ) [ + ] + [ + ] ( ) ( ){ ˜ ( )} { ˜ ( )}⁎ ⁎

n n

n n

RK

K R D D D D RK

3 Tr

81

z

n nw w w w

1
2

E E

and

{ }
{ } { }
{ }

( )

σΦ

ϒ ϒ ϒ ϒ

( ) ≃ ( ) + [ { ( )}] + [ { ( )}]

× ○ ( ) + + + + ( )

[ ( ) + ( ) + ( ) + ( )○ ( )]

{ ˜ ( )} ⁎ ⁎ { ˜ ( )} ⁎ ⁎

⁎ ⁎ ⁎ { ˜ ( )} { ˜ ( )} ⁎ 82

n z n n n

n z n

n n n n n

RK RK

R K D RD D RD D RD

D D D D D D K

E 45 Tr 15 Tr

15E
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n n

n n

w w w w w w

w w w w w w

2
6 2 2 3

E E
4

E E

Substituting (81) and (82) into (53), we obtain a recursive analy-
tical model for the behavior of ( )nK , which can then be used in (51)
to predict the EMSE behavior for the NNLMF algorithm. Note that

{ }( )z nE 4 and { }( )z nE 6 depend on the statistical distribution of the
noise z(n). For instance, if z(n) is zero-mean Gaussian noise, then

{ } σ( ) =z nE 3 z
4 4 and { } σ( ) =z nE 15 z

6 6; if z(n) is zero-mean uniform

noise, then { } σ( ) =z nE 9/5 z
4 4 and { } σ( ) =z nE 27/7 z

6 6; if z(n) is zero-

mean binary noise, then { } σ( ) =z nE z
4 4 and { } σ( ) =z nE z

6 6.

6. Simulation results

This section presents simulations in the context of system
identification with nonnegativity constraints to illustrate the ac-
curacy of the models derived in Sections 4 and 5. The impulse
response ⁎w of the unknown system is given by
[ − − − ]⊤0.8, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.1, 0.3, 0.6 . The initial
weight ( )w 0 is a vector drawn from the uniform distribution

([ ])U 0; 1 and kept the same for all realizations. Both ⁎w and ( )w 0
are shown in Fig. 2. The input is taken as either a zero-mean white
Gaussian signal of unit power or a correlated signal obtained by
filtering zero-mean white Gaussian noise with variance 3/4
through a first-order system ( ) = ( − )−H z z1/ 1 0.5 1 , which yields a
correlated input with unit variance. The above simulation setups
are the same as those in [19]. The measurement noise is either
uniformly distributed sequence in [ − ]5, 5 ( = −SNR 9.2 dB) or a
binary sequence with samples randomly drawn from the set
{ − }2, 2 ( = −SNR 6 dB). The step-size is chosen as μ = × −2 10 5 for
slow learning. All simulated curves are obtained by averaging over
200 realizations.

We first evaluate Assumptions A4 and A5 by simulation. As-
sumption A4 can be described as { ˜ ( ) ˜ ( ) ˜ ( )} ≃ { ˜ ( ) ˜ ( )} { ˜ ( )}w n w n w n w n w n w nE E Ei j k i j k .
From Fig. 3, one can see that this approximation is valid. Likewise,
Assumption A5 can be described as { } { }˜ ( )[ ( ) ˜ ( )] ≃ { ˜ ( )} [ ( ) ˜ ( )]⊤ ⊤w n n n w n n nu w u wE E Ei i

2 2 .
Fig. 4 shows that Assumption A5 is also valid. Figs. 5 and 6 show the
mean weight behavior for white and correlated inputs, respectively.
An excellent match can be verified between the behavior predicted by
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Fig. 8. Convergence of the NNLMF second-order moment in the case where the input is a correlated signal with μ = × −2 10 5, showing that the theoretical (solid) curves
match well with the simulation results (dashed). (a) Uniform noise and (b) binary noise.
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the proposed model and that obtained from Monte Carlo simulation.
Figs. 7 and 8 show the EMSE behavior (in dB) for the same example.
Here again one can verify an excellent match between theory and
simulation results.

7. Conclusions

The NNLMF algorithm can outperform the NNLMS algorithm
when the measurement noise is non-Gaussian. This paper studied
the mean and second-moment behavior of the NNLMF algorithm
for stationary Gaussian input signals and slow learning. The ana-
lysis was based on typical statistical assumptions and has led to a
recursive model for predicting the algorithm behavior. Simulation
results have shown an excellent match between the simulation
results and the predicted behavior from theoretical models. Since
stability conditions for convergence of the NNLMF algorithm are
difficult to determine analytically, a theoretical stability analysis
will be a topic for future work.
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Appendix A. Detailed calculation of (31)

Substituting (16) into the first line of (31) yields

{ }
{ }

{ }
{ }

{ ( )} = ( − )[ ( ) − ˜ ( ) ( )] ˜ ( ) ( )

= ( − )[ ˜ ( ) ( )] ˜ ( ) ( )

− ( − ) ( ) ˜ ( ) ( ) ˜ ( ) ( )

+ ( − ) ( ) ˜ ( ) ( ) ( )

⊤ ⁎ ⊤
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w u w u

w u

E E
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2E
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i i i

i i

i i
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,a E,
2

E,
2

E,

2

Using Assumptions A2 and A3, and noting that ⁎wi is deterministic,
we can simplify (83) to

{ }
{ }σ

{ ( )} = ( − )[ ˜ ( ) ( )] ˜ ( ) ( )

+ ˜ ( ) ( )
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⁎ ⊤ ⁎

p n u n i n n n n
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E E
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i i

i z i i

,a E,
2

2

Using (17) and the definition of ( )nu , we obtain

∑ ∑
( )

˜ ( ) ( ) = ˜ ( ) ( − ) + { ˜ ( − )} ( − ) + ˜ ( ) ( − )⊤

=

−

= +

−

85
n n w n u n j w n i u n i w n u n jw u E .i

j

i

j
j i

M

jE,
0

1

1

1

Also,

∑ ∑
( )

˜ ( ) ( ) = ˜ ( ) ( − ) + ˜ ( − ) ( − ) + ˜ ( ) ( − )⊤

=

−

= +

−

86
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We note that (85) has the same expression as (86) except for the
ith term, { ˜ ( − )} ( − )}w n i u n iE . Therefore, we can approximate
˜ ( ) ( )⊤ n nw uiE, by ˜ ( ) ( )⊤ n nw u for large values of M. With this approx-
imation, (84) can be written as

{ } { }σ{ ( )} ≃ ( − )[ ˜ ( ) ( )] + ˜ ( ) ( )
⊤ ⁎ ⊤ ⁎p n u n i n n w n ww u w rE E E . 87i i z i i,a

3 2

The following approximation has been derived in [29]:

{ }( )[ ˜ ( ) ( )] ≃ { ( )} { ˜ ( )} ( )
⊤n n n n nu w u RK R wE 3 Tr E . 88

3

The ith entry of (88) satisfies

{ }
{ }

( − )[ ˜ ( ) ( )] ≃ { ( )} { ˜ ( )}

= { ( )} ˜ ( ) ( )

⊤ ⊤

⊤

u n i n n n n

n n

w u RK r w

RK w r

E 3 Tr E

3 Tr E . 89

i

i

3

Substituting (89) into (87) yields

{ } { }σ{ ( )} ≃ { ( )} ˜ ( ) + ˜ ( ) ( )
⊤ ⁎ ⊤ ⁎p n n n w n wRK w r w rE 3 Tr E E . 90i i i z i i,a

2

In order to simplify the model and avoid higher-order statistics,
the approximation { ˜ ( ) ˜ ( )} ≃ { ˜ ( )} { ˜ ( )}⊤ ⊤n n n nw w w wE E E was used in
the mean weight behavior analysis of the NNLMS, for which the
detailed explanation was given in [19]. Using this approximation in
(90), we obtain (31). Note that the recursive model derived for ( )nK
in Section 5 can also be employed to predict the mean weight
behavior of the NNLMF algorithm. Nevertheless, a sufficiently ac-
curate mean weight behavior model can be obtained by using this
first-order approximation.

Appendix B. Detailed calculation of (32)

Using the approximation ˜ ( ) ( ) ≃ ˜ ( ) ( )⊤ ⊤n n n nw u w uiE, shown in
Appendix A, { ( )}p nE i,b can be approximated as

{ } { } ( )σ{ ( )} ≃ ( − )[ ˜ ( ) ( )] ˜ ( ) + ( − ) ˜ ( ) ( ) ˜ ( )⊤ ⊤
91p n u n i n n w n u n i n n w nw u w uE E E .i i z i,b

3 2

The term ˜ ( )w ni can be considered weakly correlated with
( − )[ ˜ ( ) ( )]⊤u n i n nw u 3 according to Assumptions A2, A4, and A5.

Therefore, the first term on the right-hand side of (91) can be
approximated as

{ } { }
{ }

{ } { }{ }
( )

( − )[ ˜ ( ) ( )] ˜ ( ) ≃ ( − )[ ˜ ( ) ( )] { ˜ ( )} ≃
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Tr E E 3
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3 3

The approximation { } { }˜ ( ) ˜ ( ) ≃ { ˜ ( )} ˜ ( )⊤ ⊤n n n nw w w wE E E used in Ap-
pendix A implies that { ˜ ( ) ˜ ( )} ≃ { ˜ ( )} { ˜ ( )} ∀w n w n w n w n i jE E E , ,i j i j . Thus,
with Assumptions A2 and A4, the second term on the right-hand
side of (91) can be approximated as

{ } { }σ σ( − ) ˜ ( ) ( ) ˜ ( ) ≃ ˜ ( ) { ˜ ( )} ( )⊤ ⊤u n i n n w n n w nw u w rE E E . 93z i z i i
2 2

Finally, using (92) and (93) in (91), one obtains (32).
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