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ABSTRACT

The key impediments to a successful wireless sensor network (WSN) application are the energy and the longevity constraints
of sensor nodes. Therefore, two signal processing oriented cluster management strategies, the proactive and the reactive
cluster management, are proposed to efficiently deal with these constraints. The former strategy is designed for heterogeneous
WSNs, where sensors are organized in a static clustering architecture. A non-myopic cluster activation rule is realized to
reduce the number of hand-off operations between clusters, while maintaining desired estimation accuracy. The proactive
strategy minimizes the hardware expenditure and the total energy consumption. On the other hand, the main concern of the
reactive strategy is to maximize the network longevity of homogeneous WSNs. A Dijkstra-like algorithm is proposed to
dynamically form active cluster based on the relation between the predictive target distribution and the candidate sensors,
considering both the energy efficiency and the data relevance. By evenly distributing the energy expenditure over the whole
network, the objective of maximizing the network longevity is achieved. The simulations evaluate and compare the two
proposed strategies in terms of tracking accuracy, energy consumption and execution time. Copyright © 2010 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Owing to recent advances in wireless communications
and electronic technologies, the manufacturing of low-
cost, low-power, and multi-functional miniature sensors
has become technically and economically feasible [1]. The
reliability, flexibility, cost-effectiveness and ease of deploy-
ment make wireless sensor networks (WSNs) promise
to revolutionize our life in a wide range of application
domains, including military, civil, and ecological areas
[2,3]. On the other hand, in spite of the diverse applica-
tions, WSNs face a number of unique technical challenges
due to their inherent energy and bandwidth limitations, ad
hoc deployment and unattended operation, etc. [4]. There-
fore, WSNs have gained worldwide attention in recent years
from both academia and industry [5]. In fact, the stringently
constrained energy in sensor nodes is the primary limita-
tion of WSNs. As battery-driven sensors are always left
unattended, it is inconvenient or impossible to recharge or
replace sensor batteries [6]. Considerable research has been

focused on overcoming the deficiency of energy in the sen-
sor nodes, increasing the sensor networks lifetime through
power control schemes. Among them, clustering has proven
to be an effective method to provide better quality of service
(Qos) and scalability for WSNs, while conserving the lim-
ited energy and communication bandwidth. The principle
of clustering is to subdivide the entire distributed WSN into
small subsets of nodes depending on node density, location,
or other criteria. Each of these individual subsets is called
a cluster. Then, one sensor node is selected from a cluster
to act as the cluster head (CH), monitoring the other sensor
nodes (slaves) in the cluster. The benefit of using clusters
lies in the fact that transmitting the data is reduced to small
distances for most nodes, namely the slaves, while requiring
only a few nodes (the CHs) to communicate in far distances.

The energy management strategy of WSN is application-
oriented. Most applications of data-centric WSNs are
based on the Low-Energy Adaptive Clustering Hierarchy
(LEACH) scheme [6], which randomly rotates the role of
CH to evenly distribute the energy load among sensors.
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Misra et al. [7] extended LEACH by choosing the CH
based on comparison of sensors’ residual energy in order to
achieve energy efficiency. Both the clustering schemes have
been proposed for the data aggregation application, where
all nodes need to participate in the cluster formation process,
no matter if there is an event or not. However, as the amount
of energy used in the network is proportional to the number
of active sensor nodes, the use of WSNs tends to be event-
driven for the sake of energy efficiency. Among the potential
applications of WSNs, target tracking has attracted consid-
erable attention in the literature, for instance, monitoring
wildlife animals, vehicles on the freeway, and surveillance
in the battle field etc. [8--10]. A source of difficulty in target
tracking is the power consumption incurred by its inherent
processes, such as the need to detect the target, to fuse the
measurements and to collaborate with other sensors, which
put significant requirements on the resource expenditure
in WSNs. To balance the trade-off between the resource
constraints and the tracking quality, energy management
becomes a challenging issue that must be addressed in
WSNs [11]. In fact, the relevance of the information about
the target state can be achieved by a reasonable cluster acti-
vation scheduling. Generally speaking, there are two kinds
of clustering strategies that are specially proposed for tar-
get tracking: The proactive and the reactive clusterings. In
proactive clustering, sensor nodes are organized into clus-
ters by statically dividing the network in advance, whereas
the reactive clustering means that the clustering procedure
is invoked only by events. Concerning the resource effi-
ciency in WSNs, only one CH is responsible for tracking
the target at each instant in both the clustering strategies.
Examples of proactive clustering include Reference [12],
which proposes a proactive cluster-based architecture for
the real-world acoustic tracking applications. Their study
shows that with more sensors in a cluster, the accuracy of
triangulation gets higher. Because the method does not deal
with the information between clusters, it cannot track a tar-
get whose motion lies in several clusters. Chen et al. [13]
provides a hierarchical WSN composed of a static back-
bone of CHs and a dynamic slave sensor organization. Their
design relies on dealing with collisions during the clustering
phase. The main drawback of such approach is the perfor-
mance degradation when the target speed increases. Tseng
et al. [14] propose to use a mobile agent for efficient target
tracking through collaborating sensors. Once a new object
is detected, a mobile agent is initiated to track the roam-
ing path of the object. The agent also invites some nearby
slave sensors to cooperatively triangulate the object and
inhibits other irrelevant (i.e., farther) sensors from tracking
the object. However, the energy and the memory cost of this
tracking strategy are not evaluated. Furthermore, in the case
of irregular network topologies, it may be energy or time
intensive to choose the master and the slave sensors. Yick et
al. [15] proposes the idea of dynamically changing the size
of the activated cluster and the sampling rate, based on the
prediction of a Kalman Filter (KF). However, a greedy-like
direct flooding approach is employed during the hand-off
operation, which leads to unnecessary energy consumption.

Reference [16] proposes a non-myopic clustering protocol,
where a multiple detection action sequence is computed
instead of simply looking at the next stage. The scheduling
rule minimizes the energy usage while meeting the tracking
accuracy constraint, but the computation is based on a non
realistic constant-velocity target model.

Two strategies of cluster management are proposed in
this contribution. Aiming at minimizing the resource over-
head, the proactive cluster management (Pro-CM) statically
forms clusters in advance. The WSN comprises two kinds
of nodes, slave sensors and CHs, which are organized into
clusters to provide an efficient cover of the whole network
and to minimize the cluster overlaps. Each cluster consists
of a single CH and a bunch of slave sensors. Each slave
sensor belongs to exactly one cluster and is able to commu-
nicate with its CH directly via a single hop. Slave sensors
simply detect the presence of the target in their sensing range
and report their observations to the corresponding CHs. The
CHs are in charge of coordination among the slave sen-
sors within their clusters (intra-cluster coordination), data
fusion, target tracking, and/or communication to the other
CHs with external observations (inter-cluster communica-
tion). Therefore, only the CHs require additional memory,
energy and much more computational resources. Compared
to dynamic clustering strategies [10], the time and energy
consumed in CH competition is no longer needed. Further-
more, owing to the comparatively small amount of CHs, the
total hardware expenditure is reduced. In addition, when the
target passes through the overlap field of several clusters,
exception handling is invoked to coordinate these clusters
to avoid loosing the target’s track. For reactive cluster man-
agement (Re-CM), the major concern is the longevity of
WSN. Since the lifetime of WSN critically depends not
only on the overall energy consumption but also on the
distribution of energy expenditure [17], it is rather impor-
tant to evenly distribute energy consumption to avoid any
drainage of the sensor batteries. In other words, all sensors
in WSN should be of identical configuration in order to be
capable of competing and performing the energy intensive
CH role. At every sampling instant, a cluster is dynamically
formed by sensors located around the phenomena of inter-
est. To avoid biased triangulation of the target estimation,
a Dijkstra-like algorithm is developed to choose the most
informative sensors, ensuring optimal clustering and low
computation complexity. Though the hardware expenditure
is increased for the homogeneous highly configured sen-
sors, the Re-CM strategy is much more robust to external
attack than the Pro-CM, as each sensor is enabled to take
over the CH task.

In the fully decentralized cluster scheme, only one clus-
ter is triggered to perform target tracking at every sampling
instant. Therefore, the belief estimate must be communi-
cated between successive clusters when the activated cluster
changes, namely the hand-off operation. This operation
would defeat the purpose of decentralized signal processing,
since it requires transmitting a huge amount of information.
In particular, for the classic particle filtering (PF) algorithm,
the raw estimates consist of large amount of particles and
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their corresponding importance weights. Recently, a varia-
tional approach has been proposed in References [18,19],
which approximates the a posterior distribution by one sin-
gle Gaussian statistic to conform to the communication
constraints of sensor networks. By adopting the variational
filtering (VF), the inter-cluster information exchange is
minimized, significantly reducing the communication band-
width and the energy consumption. Based on the prediction
of target tendency by VF, a non-myopic cluster activa-
tion rule is designed for the proactive cluster management
strategy. The number of hand-off operations between suc-
cessive CHs is thus reduced, minimizing corresponding
energy consumption. In the reactive cluster management,
clusters are also dynamically formed based on the predictive
distribution. Therefore, the proposed cluster-based VF algo-
rithm ensures tracking accuracy with minimum resource
allocation.

The rest of the paper is organized as follows. The
variational filtering method and its prediction phase are
introduced in Section 2. Section 3 and Section 4 are devoted
to the prediction-based strategy of Pro-CM and Re-CM
protocols, respectively. The proposed schemes are evalu-
ated by simulations in Section 5. Section 6 concludes the
paper.

2. VARIATIONAL FILTERING
ALGORITHM

The distribution of interest for target tracking takes the
form of a marginal posterior distribution p(xt |y1:t), where
xt denotes the unobserved target position, y1:t is the
sequence of observed data (with the standard notation
y1:t ≡ {y1, y2, · · · , yt}). In the Bayesian context, the task
of target tracking can be formulated as recursively calculat-
ing the predictive distribution p(xt |y1:t−1) and the filtering
distribution p(xt |y1:t) as follows:

p(xt |y1:t−1) =
∫

p(xt |xt−1)p(xt−1|y1:t−1)dxt−1,

and p(xt |y1:t) = p(yt |xt)p(xt |y1:t−1)
p(yt |y1:t−1)

One can notice from the filtering scheme that based
on the state evolution model p(xt |xt−1), the estimation
of the target state is updated by incorporating the obser-
vation model p(yt |xt). The observation model p(yt |xt)
depends on the sensing mode employed by the sen-
sors, while the state evolution model p(xt |xt−1) is always
described by a parameter model for the simplicity of
calculation.

2.1. General state evolution model

Instead of the kinematic parameter model [15,16,20] which
is usually used in tracking problems, we employ a Gen-

eral State Evolution Model (GSEM) [18,19,21]. This model
is more appropriate to the practical nonlinear and non-
Gaussian situations, where no a priori information on the
target velocity or acceleration is available. Considering
a planar geometry, the target position xt at instant t is
assumed to follow a Gaussian model, where the expec-
tation µt and the precision matrix λt are both random.
The randomness of the expectation and the precision is
used here to further capture the uncertainty of the target
state distribution. A practical choice of these distribu-
tions is a Gaussian distribution for the expectation and
a Wishart distribution for the precision matrix. In other
words, the hidden state xt is extended to an augmented
state αt = {xt , µt , λt}, yielding a hierarchical model as
follows:






xt ∼ N(µt , λt)

µt ∼ N(µt−1, λ̄),

λt ∼W2(S̄, n̄)
(1)

where the fixed hyper parameters λ̄, n̄, and S̄ are respectively
the random walk precision matrix, the degrees of freedom,
and the precision of the Wishart distribution. Assuming ran-
dom mean and precision for the state xt leads to a probability
distribution covering a wide range of tail behaviors, which
allows discrete jumps in the target trajectory. In fact, the
marginal state distribution is obtained by integrating over
the mean and precision matrix:

p(xt |xt−1) =
∫

N(xt |µt , λt)p(µt , λt |xt−1)dµtdλt (2)

where the integration with respect to the precision matrix
leads to the known class of scale mixture distributions
introduced by Barndorff–Nielsen [22]. Low values of
the degrees of freedom n̄ reflects the heavy tails of the
marginal distribution p(xt |xt−1). In fact, varying the hyper-
parameters of model Equation (1) yields a wide range of tail
behaviors, from Gaussian tails to the heavy tails of the Stu-
dent t-distributions. In order to illustrate the properties of
scale mixture distributions, also referred to as Generalized
Hyperbolic distributions, we take some examples of one-
dimensional distributions with different hyper-parameters.
Figure 1 represents the logarithm of Generalized Hyper-
bolic distributions for different hyper-parameters values.
One can note the ability to cover a wide range of tail behav-
ior.

2.2. Variational inference

As have been described above, the hidden state xt is
extended to an augmented state αt = {xt , µt , λt}. The non-
linear and the non Gaussian aspect of the GSEM (1) leads
to intractable integrals when evaluating the marginal dis-
tribution p(αt |y1:t). The variational Bayesian method is
proposed for approximating intractable integrals arising
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Figure 1. Examples of the generalized hyperbolic distributions:
(a) Hyperbolic case; (b) Cauchy case; (c) Student case. Pdfs
appear on the top row, log densities on the bottom row. The
dashed lines of each column correspond to the Gaussian distri-

butions with the same mean and variance.

in Bayesian statistics. By using a separable distribu-
tion q(αt) to lower bound the marginal likelihood, an
analytical approximation to the parameter posterior prob-
ability is provided, which is useful for the prediction
calculation.

DKL(q‖p) =
∫

q(αt) log
q(αt)

p(αt |y1:t)
dαt ,

where q(αt) =
∏

i

q(αi
t) = q(xt)q(µt)q(λt)

To minimize the KL divergence DKL subject to the
constraint

∫
q(αt)dαt =

∏
i

∫
q(αi

t)dαi
t = 1, the Lagrange

multiplier method is used, yielding the following approxi-
mate distribution [18,19,21,23,24],

q(αi
t) ∝ exp〈logp(y1:t , αt)〉∏

j (=i
q(αj

t )

where 〈·〉
q(αj

t ) denotes the expectation operator relative to the

distribution q(αj
t ). Therefore, these dependent parameters

can be jointly updated. Taking into account the separable
approximate distribution at time t − 1, the filtering distri-
bution at time t is written as

p(αt |y1:t) =
p(yt |xt)

∫
p(αt |αt−1)q(αt−1)dαt−1

p(yt |y1:t−1)

∝ p(yt |xt)p(xt |µt , λt)p(λt)qp(µt), (3)

with qp(µt) =
∫

p(µt |µt−1)q(µt−1)dµt−1

The temporal dependence on the past is hence reduced
to the incorporation of only one Gaussian component
q(µt−1) ∼ N(µ∗

t−1, λ
∗
t−1), limiting the inter-cluster commu-

nication to simply sending the mean µ∗
t−1 and the precision

λ∗
t−1 of it, when a hand-off operation comes up. Consider-

ing the GSEM proposed in Equation (1), the evolution of
µt−1 is Gaussian, namely p(µt |µt−1) ∼ N(µt−1, λ̄). There-

fore, qp(µt) is also Gaussian, qp(µt) ∼ N(µp
t , λ

p
t ), whose

hyper parameters are calculated in the following subsection
2.3.The update of the filtering distribution p(αt |y1:t) and its
approximation are jointly performed according to the Equa-
tion (3), yielding thus a natural and adaptive compression of
it, which is propagated in the sensor network without lossy
compression. Detailed information on the VF algorithm is
addressed in Reference [19].

2.3. Prediction calculation

The prediction calculation is of great importance for
the two proposed cluster management strategies: (i) the
proactive strategy activates the data processing clus-
ter according to the predictive distribution and (ii) the
reactive strategy also uses the predictive distribution to
dynamically cluster candidate sensors. The predictive distri-
bution p(xt |y1:t−1) can be efficiently updated by variational
inference. In fact, taking into account the separable approx-
imate distribution q(αt−1), the predictive distribution is
written as

p(αt |y1:t−1) =
∫

p(αt |αt−1)q(αt−1)dαt−1

∝ p(xt , λt |µt)qp(µt) (4)

The exponential form solution yields Gaussian distributions
for the target state and its mean, while Wishart distribution
for the precision matrix:

qt|t−1(xt) ∝ N(〈µt〉qt|t−1 , 〈λt〉qt|t−1 )

qt|t−1(µt) ∝ N(µ∗
t|t−1, λ

∗
t|t−1) (5)

qt|t−1(λt) ∝ W2(S∗
t|t−1, n

∗
t|t−1)

where the hyper parameters are updated according to the
following iterative scheme:

µp
t = µ∗

t−1

λp
t = (λ∗

t−1
−1 + λ̄

−1)
−1

µ∗
t|t−1 = λ∗

t|t−1
−1(〈λt〉qt|t−1 〈xt〉qt|t−1 + λp

t µ
p
t )

λ∗
t|t−1 = 〈λt〉qt|t−1 + λp

t (6)

n∗
t|t−1 = n̄ + 1

S∗
t|t−1 =

[
〈xtx

T
t 〉qt|t−1 − 〈xt〉qt|t−1 〈µt〉T

qt|t−1
+ S̄

−1

−〈µt〉qt|t−1 〈xt〉T
qt|t−1

+ 〈µtµ
T
t 〉qt|t−1

]−1

and the expectations of the predictive target state are now
evaluated by the following expressions:

〈xt〉qt|t−1 = 〈µt〉qt|t−1 , (7)

〈xtx
T
t 〉qt|t−1 = 〈λt〉−1

qt|t−1
+ 〈µt〉qt|t−1 〈µt〉T

qt|t−1
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Figure 2. VF process during consecutive sampling instants.

Compared to the particle filtering (PF) method, the compu-
tational cost and the memory requirement are dramatically
reduced by the variational approximation in the prediction
phase [18]. In fact, the expectations involved in the com-
putation of the predictive distribution have closed forms.
Thus the integral calculus in Equation (4) is reduced to
several iterations to update the involved parameters till con-
vergence (see Equation (6) for reference). On the contrary,
the PF method uses a large amount of particles to bypass the
integral calculus, which takes up much more storage space
compared to the VF algorithm. In addition, the resampling
procedure to avoid the degeneracy phenomenon of parti-
cles [25] further increases the computational cost of the
PF.

An overview of the VF process during consecutive
sampling instants is presented in Figure 2. The dashed rect-
angle denotes the procedure executed in the activated slave
sensors, whereas the other sub-programs are executed in
the activated CH. One can notice that the efficiency of
the decentralized variational tracking algorithm depends
on the relevance of the selected clusters in charge of pro-
cessing the data and updating the filtering distribution. In
the following, the cluster management strategies based on
the predictive distribution, are described.

3. PRO-CM STRATEGY

For the single target tracking application, the region under
surveillance is always quite a large area, but only a small
portion of deployed sensors can detect the target at a
specific time instance. Due to environmental perturba-
tion, the observations obtained close to the phenomenon
are more reliable than those obtained by distant sensors.
Furthermore, local communication requires less network
complexity for routing. Fewer resources, such as energy and
bandwidth, are consumed by the local communication, in
comparison to the multi-hop communication to the base sta-
tion. Cluster-based network structure is more encouraged,
since selecting the subset of informative sensors main-
tains desirable tracking accuracy while reducing resources
consumption.

Figure 3. Flow chart of the Pro-CM strategy.

The Proactive Cluster Management (Pro-CM) strategy is
proposed to minimize resource overhead in the network.
It is composed of three pivotal component mechanisms
(see Figure 3): (i) initialization, (ii) non-myopic selec-
tive cluster activation, and (iii) exception handling. The
component mechanisms are described in the following
subsections.

3.1. Initialization

The proactive aspect means that clusters are statically
formed at the time of sensors deployment. Therefore,
instead of identical hardware configuration for all sensors,
a hierarchical WSN is formed. We assume the following
properties about the network:

! all the sensors in the network are stationary and
location-aware;! slave sensors are randomly and densely deployed
through the span of the network with a density ρs

(sensors/m2). Their sensing ranges are identically set
to γs (m). Each slave sensor belongs to only one
cluster and is able to communicate with its clus-
ter head directly via a single hop. By employing
specific observation model, they identify themselves
and report their observations to corresponding cluster
heads;! cluster heads (CHs) are sparsely placed with a density
ρCH (CHs/m2) (ρCH * ρs) and the cluster radius are
γCH (m) (γCH + γs). The configuration and the deploy-
ment of CHs guarantee the communication among
neighboring CHs in one-hop. Furthermore, each CH is
capable of rooting and forwarding the messages, there-
fore, all the CHs can communicate with each other
in multi-hop. CHs also have sufficient memory and
computational resources to update the target belief by
the VF algorithm with observations collected by their
slaves.

The coverage problem means that the deployment of
sensors must ensure a high probability of detecting the
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appearance of a target. In order to generate enough infor-
mation for target tracking, at least four slave sensors are
required to detect the target and to report their observa-
tions for further processing [13]. According to the network
properties described above, the distribution of the num-
ber of slave sensors in any given area A is Poisson with
rate ρsA. Therefore, the probability for any arbitrary point
in the field to be sensed by at least four slave sensors

is ps =
∑∞

i=4
e−ρsπγ2

s (ρsπγ2
s )i

i! [8]. Similarly, the deployment
of CHs should guarantee that at least one cluster is acti-
vated to track the target, the corresponding probability is

pCH =
∑∞

i=1
e
−ρCHπγ2

CH (ρCHπγ2
CH)i

i! .
After the deployment of all sensors, each CH broad-

casts its position within the transmission range. Based on
the received signal power comparison, each slave sensor
responds to the corresponding CH with its own location
and ID to confirm the subordination. During the cluster for-
mation process, CHs can register their neighboring CHs
in the same way. After clustering, two kinds of lists are
maintained in the CHs: the neighboring CHs list and the
slave sensors list, both containing the corresponding node
IDs and positions. Each CH is capable of scheduling its
slave sensors and cooperating with specific neighboring
CHs. Figure 4 describes such an initialization scenario of
a sensor field. Initially, there is no target in the monitoring
area. To minimize energy consumption, all slave sensors
are set to ‘Sleeping’ mode. In contrast to the passive state
of slave sensors, CHs are set to ‘Sensing’ mode to detect
the appearances of unidentified objects. Such a configu-
ration is set to ensure one-coverage throughout the whole
WSN span. Once an unidentified object is detected, the cor-
responding CH activates its slave sensors immediately to
track the target, while the remaining sensors are kept in
the ‘Sleeping’ state. In particular, other non-invoked CHs
are in the ‘Sensing’ mode to cope with exceptions and any
possible intrusions.

3.2. Non-myopic selective cluster
activation

The resource saving of cluster-based scheme lies in the fact
that only one cluster is activated at each sampling instant
to update the filtering distribution. As only the cluster sen-
sors are activated to detect the moving target, the tracking
accuracy thus essentially depends on their observations.
Therefore, the cluster activation phase has a great impor-
tance not only in minimizing resource consumption but
also in tracking accuracy. Various sensor activation strate-
gies have been proposed in References [26,27]: (i) naive
activation, where all the sensors are active; (ii) random-
ized activation, where a random subset of the sensors are
active; (iii) selective activation, where a subset of the sensors
are activated according to some performance metric; (iv)
duty-cycled activation, where sensors are active for some
duty cycle. By carefully choosing the activation parameters,
selective activation strategy can provide great improve-
ments in energy usage with quasi-optimal tracking quality
[26]. Also, a commonly used solution [8] is to activate the
CH that is nearest to the target. This strategy would incur
unnecessary energy expenditure. Firstly, all the CHs need
to measure the distances between the target and themselves
at every sampling instant, then a comparison is required
to choose the nearest one. The possibility of distributed
signal processing is thus prevented and excessive communi-
cation is required. Secondly, when the target passes among
the overlap of several clusters, frequent changes of acti-
vated clusters occur, resulting in frequent communication of
the temporal dependence information and leading to unac-
ceptable additional energy and bandwidth consumption.
To terminate the unnecessary energy expenditure, cluster
activation is based on the prediction xt|t−1 = 〈xt〉qt|t−1 (sub-
section 2.3). If the predicted target position xt|t−1 remains
in the vicinity of CHt−1, then CHt = CHt−1. Otherwise, if
xt|t−1 is going beyond range of the current cluster, a new CHt

is activated based on the target position prediction xt|t−1 and
its future tendency:

CHt = argmaxj=1,...,k

(
cos θ

j
t

d
j
t

)
, (8)

where dj
t = ‖ xt|t−1 − p

j
CH ‖,

and θj
t ≡ angle(−−−−−−−→〈xt−1〉xt|t−1,

−−−−−−→
〈xt−1〉pj

CH)

where k is the number of CHs in the neighborhood of CHt−1

and p
j
CH is the position of the jth neighboring CH. Fur-

thermore, a hand-off operation is triggered to transfer the
temporal dependence information q(µt−1) from the CHt−1

to the CHt . As illustrated in Figure 5, traditional cluster
activation rule [8] activates CH2 to update the filtering dis-
tribution at time t, since it is the closest CH to the target
prediction xt|t−1. But according to the tendency, the target
is very likely to go out of its vicinity in a short time, causing
unnecessary hand-off operations. Based on the decision rule
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Figure 5. Prediction-based non-myopic CHt activation.

described by Equation (8), it is CH1 that is activated, as the
target is most likely detected by it and would stay in its vicin-
ity for a longer period. Taking into consideration the future
tendency of the target, the non-myopic cluster activation
rule avoids unnecessary hand-off operations compared to
the traditional one. Therefore, the target tracking accuracy
is ensured and the energy consumption is minimized as well.
Thanks to the variational calculus, communication between
CHt−1 and CHt is limited to simply sending the mean
and the precision of q(µt−1). Therefore, the cluster-based
variational filtering (VF) algorithm outperforms the classi-
cal distributed particle filtering (PF) algorithm in resource
(energy, bandwidth and memory) saving, as a large number
of particles and corresponding weights are maintained and
propagated in the latter case. With respect to the tracking
accuracy, the VF and the PF algorithms approximate the
true state distribution in different ways. When calculating
the integral involved in the Bayesian filtering, the PF uses a
large amount of particles whereas the VF introduces hidden
variables to bypass the difficulty. These random variables
introduced by the VF act as links that connect the observa-
tions to the unknown parameters via Bayes law. The error
propagation problem is dramatically reduced as approx-
imation of the filtering distribution is performed during
observation incorporation.

3.3. Exception handling

Due to the restriction in the observation scope of a single
cluster, the activated cluster may not provide reasonable
tracking quality, when the target changes its velocity and
direction of movement in an abrupt manner. Another kind of
exception exists when the target moves among the overlap of
several clusters. Exception handling scheme is introduced
here to cope with these situations:

! For the case of an abrupt change in the target tra-
jectory, the VF algorithm cannot export any accurate

estimation, due to the irrelevant observation data of the
activated slave sensors, namely the number of obser-
vations received at the activated CH is zero (Nob

t = 0).
The other CHs in the network are thus informed by
a ‘failure’ signal, which means that an abrupt change
has taken place during the target movement. As all
CHs work on ‘sensing’ mode since the initialization
phase (see the subsection 3.1), the CHs detecting the
target respond to the current activated CH with their
observations. The activated CH then hands-off to the
best candidate by performing the cluster activation
rule mentioned above in the subsection 3.2, where the
predictive distribution xt|t−1 is replaced by the target
location xt .! For the case of lack of sufficient information, the
amount of observations Nob

t gathered at the activated
CH is not enough for locate the target (1 < Nob

t < 4),
which suggests that the target is passing among differ-
ent clusters. As the coverage problem is guaranteed in
the initialization phase, at least one neighboring clus-
ter detects the appearance of the target within its range.
Charging only the activated cluster with data fusion
task results in poor tracking quality. As the activated
CH can only get a partial observation, biased target
estimation is unavoidable. To address this issue, the
observations of the neighboring CHs is transferred to
the current activated CH as complementary informa-
tion.

As the clusters are formed statically in advance, the num-
ber of exceptions is mainly affected by the target’s moving
manner (predictability of the trajectory) and the coverage
of each cluster. Among these factors, only the coverage of a
cluster is controllable under our assumptions. If the cover-
age of a cluster is too small, the second kind of exceptions
will increase, which leads to frequent exception handling
and energy inefficiency. On the other hand, if the coverage
of a cluster is too big, too many sensors would be activated
at one instant, which makes no sense of using the cluster-
ing protocol. In our strategy, the CHs are uniformly and
sparsely deployed with one-coverage of the surveillance
area, whereas the four-coverage is guaranteed by the ran-
domly distributed slave sensors. This deployment strategy
reduces the occurrence of the second kind of exceptions.
On the other hand, the first kind of exceptions is uncontrol-
lable as the moving manner of the target is assumed to be
unpredictable in our study.

To sum up, the Pro-CM strategy yields several advantages
according to its design. Firstly, the cost of hardware config-
uration drops sharply owing to the low-cost slave sensors.
Secondly, the needed bandwidth and the consumed energy
in communication are dramatically reduced. Since the sig-
nal processing task is assigned to only one activated CH, just
the slave sensors belonging to the active CH are required
to transmit their observations over small distances. In addi-
tion, avoiding CH competition puts an end to unnecessary
resource consumption. Only when the hand-off operation
occurs does the active CH need to communicate the tem-
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Figure 6. Reactive cluster management during successive sam-
pling instants.

poral dependence information for a considerable distance
to the subsequent CH. However, the occurrence of hand-
off operations is reduced by the non-myopic selective CH
activation rule and the temporal dependence information is
minimized by the VF algorithm. The limitation of Pro-CM
lies in its vulnerability to external attack. In fact, the acti-
vated CH is the only sensor performing tracking algorithm
and none of its slave sensors would be able to take over the
task.

4. RE-CM STRATEGY

Unlike the Pro-CM strategy, the reactive cluster manage-
ment (Re-CM) strategy forms a cluster dynamically at every
sampling instant. To ensure that each sensor in the WSN is
capable of performing the task of an active CH, all of them
are assumed to have an identical configuration with suffi-
cient battery and computational power. By densely deploy-
ing the homogeneous sensors, the four-coverage prob-

lem is ensured, where phs =
∑∞

i=4
e
−ρhsπγ2

hs (ρhsπγ2
hs

)i

i! . 1.
Each of the sensors keeps an address list of its neighbor-
ing sensor IDs and locations by exchanging information
between each other. At the initialization step, all of them
are set to the ‘Sensing’ mode to monitor the whole region.
As soon as an intrusion is detected, sensors within the
phenomenon of interest exchange information to form a
cluster dynamically. CH0 is randomly chosen among these
sensors since their residual energy are identical initially.
By performing the VF algorithm, the target position xt is
estimated, and a prediction of it is generated for reactive
clustering. Specifically, at instant t − 1, the target predic-
tion xt|t−1 is broadcasted by the CHt−1. Sensors that within
the vicinity of the target prediction then respond to CHt−1

with their own positions and residual energy. By executing
the Dijkstra-like algorithm, the CHt−1 activates the most
potential candidate nodes among them. To balance energy
consumption, the energy-intensive task of CHt is assigned
to the sensor with the most residual energy in the activated
cluster. If CHt (= CHt−1, a hand-off operation is trigged to
transfer the temporal dependence q(µt−1) for further work.
The Re-CM strategy during successive sampling instants is
demonstrated in Figure 6.

Figure 7. Clustering effectiveness comparison.

4.1. Dijkstra-like algorithm

Reactive clustering algorithm activates sensors based on
two major criteria: (i) Sensors that are more informa-
tive [10,27]; (ii) Sensors that have more available residual
energy [7,28]. Since target tracking triangulates the timely
location of the target based on the observations of cluster
sensors, the size of the cluster and the cluster sensor loca-
tions have great influence on tracking quality. The most
frequently used way of forming a dynamic cluster is to
choose sensors that are nearest to target. This solution raises
however some questions: (i) How to decide the optimal
scale of a dynamic cluster (NP-Complete problem [29])?
(ii) What if the activated sensors are all gathered at the
same side of the target (see Figure 7)?

We formulate the clustering problem by considering
sensors as vertice of a polygon, where two sensors are con-
nected by an edge if and only if they can communicate
with each other in one-hop. The clustering strategy is thus
reduced to find a polygon, whose centroid c[vertices] is
nearest to the predicted target position xt|t−1:

Sop = {vertices| arg min[distance(c[vertices], xt|t−1)]} (9)

where Sop is the optimal cluster. Note that the polygon ver-
tices number is not fixed, which suggests no bound on the
number of reactive cluster sensors. Our algorithm is inspired
by the Dijkstra algorithm, which finds the path with the low-
est cost (i.e., the shortest path) from a given source vertex
to every other vertex in a graph. Instead of a single source,
we extend the Dijkstra algorithm to calculate the path with
the lowest cost between two arbitrary vertices in the graph,
namely the global minimal cost, by iterating each vertex in
the graph to be the source. Furthermore, in our algorithm,
the cost to be minimized is defined as the distance between
the predicted target position xt|t−1 and a centroid c[v] of a
polygon S[v] containing the vertex v. The optimal cluster is
obtained by calculating the global minimal cost as follows
(see Algorithm 1).

Let V denotes the original set of candidate sensor nodes,
which are all the sensors within the disk of radius γhs around
the target prediction xt|t−1. The vertex source denotes the
cursor vertex of each step, whose initial value is the acti-
vated CH at instant t − 1. For each vertex v in V , the
following data structures are maintained: (i) the current
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Algorithm 1 Dijkstra-like clustering algorithm

1: function Dijkstroid(V , xt|t−1)
2: for i = 1; i ≤ n do
3: float d[i] = distance(i, xt|t−1)
4: p[i] = null

5: c[i] = null

6: end for
7: Sop = null

8: source = CHt−1

9: c[source] = source

10: queue = {source}
11: while not end of queue do
12: cursor = queue(1)
13: for v ∈ {V − queue} do
14: distnew(v) =

distance(avg({S[v], cursor}), xt|t−1)
15: if distnew(v) < d[v] then
16: d[v] = distnew(v)
17: p[v] = cursor

18: c[v] = avg({S[v], cursor})
19: queue = {queue, v}
20: end if
21: end for
22: queue = queue − cursor

23: end while
24: Index = min(d[:])
25: s = V (Index)
26: while p[s] (= null do
27: Sop = {s, Sop}
28: s = p[s]
29: end while
30: return Sop

31: end function

optimal cluster S[v] containing the vertex v; (ii) the cen-
troid c[v] of S[v], where c[v] = avg(S[v]); (iii) the cost
d[v], which equals distance(c[v], xt|t−1); and (vi) p[v]
denotes the predecessor of the vertex v in S[v]. The algo-
rithm works by keeping the cost d[v] minimum between
the target prediction xt|t−1 and the polygon centroid c[v]
so far. Initially, for the vertex source, namely the CHt−1,
d[source] equals distance(CHt−1, xt|t−1), and c[source] =
CHt−1, p[source] = null, accordingly. For all other vertices
v, d[v] = distance(v, xt|t−1), c[v] = null and p[v] = null,
these definitions represent the fact that we do not know
any cluster containing those vertices. The algorithm also
maintains two sets of vertices queue and {V − queue}.
The set queue contains all the vertices for which the tem-
poral optimal costs are already calculated, and the set
{V − queue} contains all the other vertices. The set queue

initially contains only the vertex source. For each sensor v

in {V − queue}, the algorithm checks if involving source in
S[v] can improve its known cost d[v]. If so, the algorithm
updates d[v] with the new smaller value, p[v] = source

and c[v] = avg({S[v], source}) is the new polygon cen-
troid accordingly. The temporal optimal cluster S[v] is
thus refreshed. Meanwhile, the vertex v is moved from

{V − queue} to queue. After the check of all the vertices
in {V − queue}, the source vertex is popped from the set
queue, and the cursor points to the first vertex in queue to
begin a new iteration. When the algorithm converges, S[v] is
the cluster that involve sensor v and minimizes d[v] among
all the possible clusters. Accordingly, d[v] is the shortest
distance from the centroid c[v] of S[v] to the target predic-
tion xt|t−1. By choosing the minimal value in the array d and
tracing back the corresponding cluster by the predecessor
array p, the optimal cluster Sop is formed.

Similar to the Dijkstra algorithm, the time complexity of
our algorithm is O(n2), where n is the number of sensor
nodes in V . Deployment of sensors guarantees the four-
coverage problem and suggests a low probability of too
many sensors detecting the target at the same sampling
instant. Therefore, not only the time complexity but also
the space complexity of the algorithm have dropped dra-
matically, leading to a high resource efficiency in WSN.
The validity of the algorithm is guaranteed by its similarity
to Dijkstra algorithm. A simple demonstration in Figure 7
compares its clustering result with that of the traditional
nearest-clustering rule. We can see that the Dijkstra-like
clustering algorithm considers not only the sensor positions
but also their relationship to the target prediction. Even if the
cluster members are not as close to the target as the sensors
following the nearest-clustering, a much more precise and
unbiased estimation is maintained by the Re-CM strategy.

4.2. Overview of the Re-CM strategy

The flow chart of the Re-CM strategy is depicted in
Figure 8. Based on the prediction xt|t−1, the activated CHt−1

calculates the successive optimal cluster by the Dijkstra-like
clustering algorithm. The new CHt is elected by comparing
the residual energy among the cluster members. Advan-
tages of the Re-CM strategy can be summarized as follows.
Firstly, the tracking accuracy is guaranteed by choosing
the most potential sensors to dynamically form a cluster.
Secondly, as the lifetime of WSN is defined as the time
elapsed until the first sensor depletes its energy [7,30], it is
essential to evenly distribute the energy consumption over
the whole WSN. By dynamically forming clusters, CHs
performing a series of energy-intensive functions are chang-
ing frequently in order to balance the energy expenditure.
Thirdly, the Re-CM strategy is much more robust to exter-
nal attack. However, all these advantages are at the expense
of homogeneous high hardware configuration.

Figure 8. Flow chart of the Re-CM strategy.
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Figure 9. Target tracking performance: (a) Pro-CM with range-based measurements; (b) Pro-CM with binary proximity observation; (c)
Re-CM with range-based measurements; and (d) Re-CM with binary proximity observation.

5. EVALUATION AND SIMULATION

The performances of the Pro-CM and the Re-CM strategies
are evaluated by the following three criteria:! tracking accuracy: quantified by the root mean square

error (RMSE) between the estimated and the true tra-
jectories of the target;! energy consumption: computed with reference to the
models mentioned below;! execution time: reflected by the time complexity of the
algorithm.

To calculate the energy expenditure during the whole
process, we adopt two hypotheses: (i) the intra-cluster com-
munication and the inter-cluster communication between
neighboring CHs are via single hops; (ii) the energy con-
sumed in computation can be neglected relative to energy
consumed in communication. According to the energy con-
sumption model proposed in References [16,31], the energy

consumed in transmission is ET = εe + εad
3, where εe is

the energy consumed by the circuit per bit, εa is the energy
dissipated in Joules per bit per m3 and d is the transmission
distance (εa = 3.5 × 10−3 pJ/bit/m3, εe = 45 nJ/bit). The
energy consumed when receiving data is given by ER =
εrN, where εr denotes the energy expended on receiving
one bit of data (εr = 135 nJ/bit). Similarly, the energy con-
sumed in detection is defined by ES = εsN, where εs is the
energy expended on sensing one bit of data (εs = 50 nJ/bit).

Considering a target tracking duration of 100 time slots,
400 sensors were randomly deployed in a two-dimensional
field (100 × 100 m2). The detection radius were identi-
cally set to 9 m to ensure the four-coverage condition.
For the Pro-CM strategy, all these sensors belonged to 25
sparsely positioned CHs. The cluster radius was 15 m for
the requirement of one-coverage. The communication noise
was assumed to be white Gaussian, with covariance set to
0.01. All the simulations shown in this paper were imple-
mented by Matlab version 7.1, using an Intel Pentium D
CPU 3.4 G Hz, 1.0 G Hz RAM PC.
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Figure 10. Root mean square errors (RMSE), for range-based measurements ((a) and (c)), and for binary proximity measurements
((b) and (d). (a) Pro-CM with range-based measurements; (b) Pro-CM with binary proximity observation; (c) Re-CM with range-based

measurements; and (d) Re-CM with binary proximity observation.

Two kinds of observation models, the range-based mea-
surement model and the binary proximity observation
model, are considered to evaluate performances of the
two cluster management strategies. For the range-based
measurement model, slave sensors determine the distances
between the target and themselves with reference to a path-
loss model, then transmit their observations to the activated
CH. When using the binary proximity observation model,
a slave sensor simply makes a binary decision based on the
strength of the perceived signal, and only one bit is transmit-
ted to report the appearance of a target in the sensing range.
A simplified hardware configuration and minimized energy
consumption is thus achieved by the basic model. How-
ever, the binary proximity observation model suffers from
problems of noisy links and poor estimation precision. Fig-
ure 9a and b demonstrate the tracking performances of the
Pro-CM strategy by the two observation models. Accord-
ingly, the tracking results of the Re-CM strategy with the
two kinds of observation models are shown in Figure 9c

and d. The corresponding root mean square errors (RMSE)
are depicted in Figure 10. The simulation results confirm
that, despite of the abrupt changes in the target trajectory,
desired tracking quality is ensured by both the Pro-CM
and the Re-CM strategies. The range-based measurement
model outperforms the binary proximity observation model
in tracking precision. However, taking into account the
energy consumption, which is shown in Figures 11 and 12,
we conclude that the binary proximity observation model
is much more energy-efficient than the range observation
model for both the Pro-CM and the Re-CM strategies. As
shown in Figure 11, the energy consumption of the whole
WSN employing the Pro-CM strategy is concentrated on the
activated CHs, especially during the occurrence of hand-
off operations. By assigning the energy-intensive task to
the CHs of sufficient batteries, the energy consumption in
the slave sensors is dramatically reduced. Based on the
non-myopic selective CH activation rule of Equation (8),
the number of hand-off operations, which is illustrated by
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Figure 11. Energy consumption distribution of the WSN using the Pro-CM strategy.

the numbers of activated CHs in Figure 11, has dropped
dramatically in comparison to that of the Re-CM strategy
(see Figure 12). The overall energy consumption is thus
minimized by the Pro-CM strategy. On the other hand, the
Re-CM evenly distributes the energy expenditure over the
whole network by selecting the candidate sensor with the
most residual energy to be the activated CH. The energy
consumption is thus evenly distributed along the target tra-
jectory for both the information relevance and the energy
efficiency. As illustrated in the Figures 11 and 12, the sum-
mit values of energy consumption in the Re-CM are lower
than those of the Pro-CM. This observation reflects that the
probability of battery drainage in the sensors employing Re-
CM is comparatively reduced and prolongs thus the lifetime
of the WSN.

Monte Carlo simulations were performed in order to
evaluate the performances of the two strategies in terms
of the three criteria mentioned above. The above expected
qualitative performances of the two strategies have been
confirmed as shown in Table I. With respect to the RMSE,
both of them can ensure the desired tracking accuracy even
with the coarse binary observation model. Typically, the
RMSE obtained by the range observation model is much
lower than that of the binary observation model. The rea-

son why the performance of Pro-CM is slightly better than
that of Re-CM lies in the fact that the former strategy has
more redundant information. The hand-off occurrences are
greatly reduced from over 97 times in the Re-CM strat-
egy to about 16 times in the Pro-CM strategy, owing to the
non-myopic selective cluster activation rule. Accordingly,
the overall energy consumption of Pro-CM in the CHs is
minimized compared to that of Re-CM for both the range
and the binary observation models. The use of the binary
proximity observation model dramatically reduces the intra-
cluster and inter-cluster communication, which greatly cuts
down the overall energy expenditure in both the CHs and
the slave sensors. Concerning the average energy consump-
tion, the Re-CM strategy changes the activated CHs much
more frequently than the Pro-CM, in order to balance their
energy consumption. The longevity of WSN is thus ensured
by avoiding any battery exhaustion. In fact, the average
energy consumption of the CHs in Re-CM is less than that
of Pro-CM. With respect to the energy consumption in the
slave sensors, as only the most informative sensors are acti-
vated to form the dynamic cluster in Re-CM, the activated
cluster size is smaller in comparison to that of Pro-CM,
reducing thus the overall energy consumption in slave sen-
sors. However, those sensors employing the Re-CM strategy
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Figure 12. Energy consumption distribution of the WSN using the Re-CM strategy.

need to communicate their residual energy levels for CH
competition. More energy is thus consumed by the Re-CM
cluster slave sensors than the Pro-CM ones. That is why
the average energy consumption by the slave sensors of Re-
CM is higher than that of Pro-CM. Especially when the
binary observation model is employed, the energy expendi-
ture in observation communication is significantly reduced,

which is much lower than the energy consumed in residual
energy level communication. Therefore, the Pro-CM strat-
egy demonstrates a grater improvement in energy efficiency
than the Re-CM strategy, when using the binary observation
model. For both strategies, accurate tracking by the range
observation model comes at the expense of energy con-
sumption and execution time, since transmitting the range

Table I. Monte Carlo evaluation of the Pro-CM and the Re-CM strategies.

Pro-CM Re-CM

Evaluation Range Binary Range Binary

RMSE 0.1229 1.4389 0.2804 1.4769

Hand-off times 15.95 16.95 97.33 97.83

Overall energy CHs :3.21 mJ CHs :1.01 mJ CHs :9.71 mJ CHs :5.02 mJ
consumption Slaves :3.30 mJ Slaves :0.21 mJ Slaves :1.52 mJ Slaves :1.20 mJ

Average energy 129.01 !J/CH 58.46 !J/CH 100.67 !J/CH 51.66 !J/CH
consumption 10.55 !J/Slave 0.67 !J/Slave 25.14 !J/Slave 18.21 !J/Slave

Execution time 0.3872 s 0.0636 s 0.6099 s 0.0663 s
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Figure 13. Tracking performance of the Pro-CM BVF and the BPF algorithms: (a) Tracking scenery and (b) RMSE.

measurements consumes much more energy, and it takes
more time for the VF algorithm to converge. Nevertheless,
compared to the sampling instant (1 s), both the strategies
succeed in real-time target tracking even with the range
observation model. In particular, for the Re-CM, more time
is consumed during the dynamic clustering phase. How-
ever, based on the reliable prediction of the VF algorithm,
the scale of the initial candidate set V has been reduced,
leading to a significant reduction in the computation time
of the Dijkstra-like clustering algorithm.

To further demonstrate the efficiency of the proposed
cluster-based variational filter (VF) algorithm, we com-
pared it with the most concurrent technique—the particle
filtering algorithm using binary proximity observation
model (BPF) proposed by Djuric et al. [20]. The track-
ing performances of the Pro-CM based BVF algorithm are
compared with those of the BPF algorithm in Figure 13a and
b, respectively, demonstrating their effectiveness in non-
Gaussian context. In fact, the approximation phase of the
VF and BPF algorithms are essentially based on impor-

tance sampling. The precision of tracking thus depends on
the choice of the importance sampling distribution. The
VF algorithm yields an optimal choice of the sampling
distribution over the target position xt by minimizing the
KL divergence DKL. Variational calculus leads to a simple
Gaussian sampling distribution whose parameters are iter-
atively optimized. Due to the importance sampling phase,
the space complexities during a time slot of the two algo-
rithm are comparable, which is proportional to the number
of involved particles. Tracking performances of the VF and
the BPF algorithm versus the number of particles are shown
in Figure 14a. Computation times are reported in Figure 14b.
As can be expected, with the amount of particles increas-
ing, both the algorithms demonstrate much more accurate
tracking at the cost of a higher computation complexity. In
particular, the computation time of the BPF grows propor-
tionally to the increment of the number of particles. Where
as the time consumed for the Pro-CM based BVF algorithm
in cluster activation, involved hyper parameters update etc.
is independent of the number of particles. Therefore, the

Figure 14. Comparisons of the Pro-CM BVF and the BPF algorithms versus the number of particles: (a) RMSE versus number of
particles and (b) Computation time versus number of particles.
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Pro-CM based BVF algorithm is more time-consuming
compared to the BVF algorithm as shown in Figure 14b.
Concerning the storage occupation rate during successive
sampling instants, the VF algorithm maintains only one
Gaussian statistic whereas the BPF algorithm stores a large
number of particles.

6. CONCLUSION

Two customized target tracking schemes have been pro-
posed in the context of wireless sensor network. Aiming
at minimizing resource consumption, the Pro-CM strategy
forms clusters in advance, leading to economical hardware
configuration. The reaction time and the communication
burden during the clustering phase are thus dispensed with.
Owing to the non-myopic CH activation rule, hand-off
operations dramatically decrease, further reducing energy
consumption and inter-cluster communication. Taking into
account the longevity and the robustness of WSN, the
Re-CM strategy is introduced. It consists of forming clus-
ters reactively to maximize observation data relevance and
to evenly distribute energy consumption. Employing the
Dijkstra-like clustering algorithm allows an unbiased esti-
mation and an optimal solution to the clustering phase.
The energy and communication intensive task of the CH
is evenly distributed throughout the whole network by the
residual energy level comparison among candidate sensors.
Based on the reliable prediction of the VF algorithm, effec-
tive clustering is ensured not only in terms of accuracy but
also of reduction in computation time. Furthermore, the VF
algorithm guarantees the tracking quality even in nonlinear
and non-Gaussian environments, and significantly reduces
the inter-cluster communication to a single Gaussian dis-
tribution. The binary proximity and the range observation
models have been adopted in the simulations for evaluation
purpose.
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